Listing 1 - 10 of 272 | << page >> |
Sort by
|
Choose an application
Artificial Intelligence (AI) has attracted the attention of researchers and users alike and is taking an increasingly crucial role in our modern society. From cars, smartphones, and airplanes to medical equipment, consumer applications, and industrial machines, the impact of AI is notoriously changing the world we live in. In this context, Deep Learning (DL) is one of the techniques that has taken the lead for cognitive processes, pattern recognition, object detection, and machine learning, all of which have played a crucial role in the growth of AI. As such, this book examines DL applications and future trends in the field. It is a useful resource for researchers and students alike.
Deep learning (Machine learning) --- Artificial intelligence.
Choose an application
Choose an application
This reprint provides research on how technologies such as artificial intelligence-based machine learning and deep learning can be applied to remote sensing. Through this, we can see the process of solving the existing problems of image and image signal processing for remote sensing. These techniques are computationally intensive and require the help of high-performance computing devices. With the development of devices such as GPUs, remote sensing technology, and aerial sensing technology, it is possible to monitor the Earth with high-resolution images and to obtain vast amounts of Earth observation data. The papers published in this reprint describe recent advances in big data processing and artificial intelligence-based technologies for remote sensing technology.
Deep learning (Machine learning) --- Machine learning. --- Remote sensing.
Choose an application
artificial intelligence --- deep learning --- applied ai --- robotics --- machine learning --- natural language processing --- Artificial intelligence --- Periodicals.
Choose an application
Can humans and artificial intelligences share concepts and communicate? This book shows that philosophical work on the metaphysics of meaning can help answer these questions. Herman Cappelen and Josh Dever use the externalist tradition in philosophy to create models of how AIs and humans can understand each other. In doing so, they illustrate ways in which that philosophical tradition can be improved. The questions addressed in the book are not only theoretically interesting, but the answers have pressing practical implications.
Choose an application
This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced.
Maths for computer scientists --- Objektdetektion --- Neuronale Netze --- Luftbilddaten --- Object Detection --- Deep Learning --- Aerial Imagery
Choose an application
Choose an application
Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learning engineers can use in a wide range of fields, from biology to computer vision to business. With nine in-depth case studies, this book will ground you in creative, real-world deep learning thinking. Youll begin with a structured guide to using Keras, with helpful tips and best practices for making the most of the framework. Next, youll learn how to train models effectively with transfer learning and self-supervised pre-training. You will then learn how to use a variety of model compressions for practical usage. Lastly, you will learn how to design successful neural network architectures and creatively reframe difficult problems into solvable ones. Youll learn not only to understand and apply methods successfully but to think critically about it. Modern Deep Learning Design and Methods is ideal for readers looking to utilize modern, flexible, and creative deep-learning design and methods. Get ready to design and implement innovative deep-learning solutions to todays difficult problems. You will: Improve the performance of deep learning models by using pre-trained models, extracting rich features, and automating optimization. Compress deep learning models while maintaining performance. Reframe a wide variety of difficult problems and design effective deep learning solutions to solve them. Use the Keras framework, with some help from libraries like HyperOpt, TensorFlow, and PyTorch, to implement a wide variety of deep learning approaches.
Choose an application
Choose an application
Listing 1 - 10 of 272 | << page >> |
Sort by
|