Listing 1 - 10 of 74 | << page >> |
Sort by
|
Choose an application
Michael Hauschild takes the reader of this essential back to the year 2012, when the discovery of the Higgs particle was announced at CERN, the European Organization for Nuclear Research near Geneva, Switzerland. The author vividly explains the Higgs mechanism for mass generation with the central role of the Higgs particle in current particle physics and the long hunt for its discovery at the Large Hadron Collider LHC. After a stop of more than two years, the LHC, the world‘s largest particle accelerator was put back into operation in spring 2015 to discover the secrets of nature at higher energy than ever before. An overview of future projects concludes this essential. This Springer essential is a translation of the original German 1st edition essentials, Neustart des LHC: die Entdeckung des Higgs-Teilchens by Michael Hauschild, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically different from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors. The Content Mass does it! - How the particles get their mass From UFOs and more! - The LHC goes into the next round The plan of the century! - Higgs, what next? The Target groups Scientifically interested laymen and students Lecturers and students of the Studium Generale and the natural sciences The Author Dr. Michael Hauschild is a particle physicist at CERN in Geneva and has been a member of the ATLAS experiment at the Large Hadron Collider LHC since 2005. During the first long measurement period of the LHC from 2010 to 2012, he witnessed the discovery of the Higgs particle in summer 2012.
Nuclear physics --- atoomfysica --- Nuclear physics. --- Nuclear and Particle Physics.
Choose an application
1. introduction 2. Introduction to physics of the solid state 3. Methods of measuring properties 4. Properties of individual nanoparticles 5. Carbon nanostructures 6. Bulk nanostructured materials 7. Nanostructured ferromagnetism 8. optical and vibrational spectroscopy 9. Quantum wells, wires and dots 10. Self-Assembly and catalysis 11. Organic compounds and polymers 12. Biological materials 13. Nanomachines and nanodevices
Experimental atomic and molecular physics --- atoomfysica --- Electronics --- elektronica --- Materials sciences --- elementaire deeltjes --- Molecular physics --- Nanotechnology. --- Nanotechnologie
Choose an application
This book focuses on recent topics of quantum science in both physics and chemistry. Until now, quantum science has not been fully discussed from the interdisciplinary vantage points of both physics and chemistry. This book, however, is written not only for theoretical physicists and chemists, but also for experimentalists in the fields of physical chemistry and condensed matter physics, as collaboration and interplay between construction of quantum theory, and experimentation has become more important. Tips for starting new types of research projects will be found in an understanding of cutting-edge quantum science. In Part I, quantum electronic structures are explained in cases of strongly correlated copper oxides and heavy elements. In Part II, quantum molecular dynamics is investigated by computational approaches and molecular beam experiments. In Part III, after lithium problem in big bang nucleosynthesis scenario is considered using supersymmetric standard model, quantum theories in atomic and molecular systems are reviewed. Finally, in Part IV, the development of quantum computational method is introduced. .
Choose an application
This book aims to explain radiation from a somewhat different aspect than its traditional image as something that is scary, dangerous, hazardous, and so on, to produce the correct understanding that radiation is carrying energy, and to convince readers that radiation is not "scary" but controllable and useful. As for radiation itself, many introductions or textbooks have been published, as in radiochemistry, radiobiology, and radiology. In most of them, the biological effects of radiation exposure are the main subjects, which often enhance the feeling that radiation is dangerous, and the effects produced by lower-dose exposure that are difficult to see are hardly discussed. The present volume mainly focuses on how radiation carries energy, how energy is absorbed in substances as absorbed doses (Gy) or dose equivalents (Sv), how damages or risks appear with the absorbed dose and why the effects of the exposure appear quite differently, depending on properties of the substances that were exposed.
Optics. Quantum optics --- Nuclear physics --- Human medicine --- fysica --- atoomfysica --- straling --- Radiation --- Radiation dosimetry. --- Measurement --- Physics --- Science
Choose an application
Exploring the Large Hadron Collider: The Detectors by Michael Hauschild provides an in-depth examination of the world's largest particle accelerator, the Large Hadron Collider (LHC) at CERN. This book discusses the development, challenges, and breakthroughs associated with the LHC, including the discovery of the Higgs boson. It aims to offer readers insight into the workings of particle detectors and the theoretical underpinnings of the Standard Model of particle physics. The book is intended for those interested in cutting-edge scientific research and the technological marvels that enable it. It emphasizes the ongoing quest for new particles and phenomena that could redefine our understanding of the universe.
Choose an application
This book takes the reader on a journey to the Big Bang, learning on the way about various physical facts, observations, and theories. String theory is introduced as a possible all-encompassing physical theory that has the potential to grasp and describe the Big Bang. Its sometimes-spectacular predictions, such as additional spatial dimensions or parallel universes, are explained concisely.
Cosmology --- Experimental nuclear and elementary particle physics --- Nuclear physics --- Geophysics --- zwaartekracht --- kosmologie --- atoomfysica --- Big bang theory. --- String models.
Choose an application
This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importance of atomic diffusion in a given star.
Cosmology --- Astrophysics --- Experimental nuclear and elementary particle physics --- Nuclear physics --- astrofysica --- kosmologie --- atoomfysica --- Physics --- Physique --- Astrophysique --- Cosmologie --- Physique nucléaire
Choose an application
This volume comprises select peer-reviewed papers from the Indo-French Workshop on Multifragmentation, Collective Flow, and Sub-Threshold Particle Production in Heavy-Ion Reactions held at the Department of Physics, Panjab University, Chandigarh, India in February, 2019. The contents highlight latest research trends in intermediate energy nuclear physics and emphasize on the various reaction mechanisms which take place in heavy-ion collisions. The chapters contribute to the understanding of interactions that govern the dynamics at sub-nucleonic level. The book includes contributions from global experts hailing from major research facilities of nuclear physics, and provides a good balance between experimental and theoretical model based studies. Given the range of topics covered, this book can be a useful reference for students and researchers interested in the field of heavy-ion reactions.
Mathematical physics --- Nuclear physics --- Nuclear energy --- kernfusie (technologie) --- theoretische fysica --- wiskunde --- fysica --- atoomfysica --- Nuclear physics. --- Heavy ions.
Choose an application
From World War II to the present day, nuclear power has remained a controversial topic in the public eye. In the wake of ongoing debates about energy and the environment, policymakers and laypeople alike are once more asking the questions posed by countless others over the decades: What actually happens in a nuclear power plant? Can we truly trust nuclear energy to be safe and reliable? Where does all that radiation and waste go? This book explains everything you would want to know about nuclear power in a compelling and accessible way. Split into three parts, it walks readers through the basics of nuclear physics and radioactivity; the history of nuclear power usage, including the most important events and disasters; the science and engineering behind nuclear power plants; the politics and policies of various nations; and finally, the long-term societal impact of such technology, from uranium mining and proliferation to final disposal. Featured along the way are dozens of behind-the-scenes, full-color images of nuclear facilities. Written in a nontechnical style with minimal equations, this book will appeal to lay readers, policymakers and professionals looking to acquire a well-rounded view about this complex subject.
Space research --- Nuclear physics --- Physics --- Nuclear chemistry --- Nuclear energy --- stralingschemie --- kernenergie --- fysica --- ruimte (astronomie) --- atoomfysica --- Nuclear energy.
Choose an application
Supersymmetry (SUSY) introduces superpartners of the Standard Model (SM) particles. If their masses are typically O(100 GeV) ∼ O(TeV), a lightest neutralino can be a candidate for the dark matter, and the problem is solved by canceling the correction of the Higgs boson mass. Further, SUSY can explain the experimental result of the muon magnetic moment (g-2). This book presents a search for electroweakinos-the superpartners of the SM electroweak bosons-such as charginos and neutralinos using data at the LHC collected by the ATLAS detector. Pair-produced electroweakinos decay into the light ones and SM bosons (W/Z/h), and with the large mass difference between the heavy and light electroweakinos, the SM bosons have high momenta. In a fully hadronic final state, quarks decayed from the bosons are collimated, and can consequently be reconstructed as a single large-radius jet. This search has three advantages. The first is a statistical benefit by large branching ratios of the SM bosons. The second is to use characteristic signatures-the mass and substructure-of jets to identify as the SM bosons. The last is a small dependency on the signal model by targeting all the SM bosons. Thanks to them, the sensitivity is significantly improved compared to the previous analyses. Exclusion limits at the 95% confidence level on the heavy electroweakino mass parameter are set as a function of the light electroweakino mass parameter. They are set on wino or higgsino production models with various assumptions, such as the branching ratio of their decaying and the type of lightest SUSY particle. These limits are the most stringent limits. Besides, this book provides the most stringent constraints on SUSY scenarios motivated by the dark matter, the muon g-2 anomaly, and the naturalness.
Quantum mechanics. Quantumfield theory --- Experimental nuclear and elementary particle physics --- Elementary particles --- Nuclear physics --- elementaire deeltjes --- kwantumleer --- fysica --- atoomfysica --- Bosons.
Listing 1 - 10 of 74 | << page >> |
Sort by
|