Listing 1 - 1 of 1 |
Sort by
|
Choose an application
Nowadays, polymer self-assembly has become extremely attractive for both biological (drug delivery, tissue engineering, scaffolds) and non-biological (packaging, semiconductors) applications. In nature, a number of key biological processes are driven by polymer self-assembly, for instance protein folding. Impressive morphologies can be assembled from polymers thanks to a diverse range of interactions involved, e.g., electrostatics, hydrophobic, hots-guest interactions, etc. Both 2D and 3D tailor-made assemblies can be designed through modern powerful techniques and approaches such as the layer-by-layer and the Langmuir-Blodgett deposition, hard and soft templating. This Special Issue highlights contributions (research papers, short communications, review articles) that focus on recent developments in polymer self-assembly for both fundamental understanding the assembly phenomenon and real applications.
evaporative self-assembly --- encapsulation --- n/a --- microstructure --- solvent vapor annealing --- drug delivery --- polyhedral oligomeric silsesquioxane --- protein adsorption resistance --- photo-sensitive --- calcium carbonate --- fluorescence --- mucin --- polymerisation --- marine exopolysaccharide --- transglutaminases --- porous hydrogel --- adsorption --- aprotinin --- nanoparticle --- calcium alginate --- protamine --- nanocrystalline --- self-assembly --- morphological transformation --- cell culture --- block polymers --- stimuli-responsive polymer --- crosslinking --- mesoporous --- Ti6Al4V --- polymer --- flexible geometric confinement --- layer-by-layer --- surface modification --- co-synthesis --- nanolithography --- CaCO3 --- synthetic polypeptide --- air-liquid interface --- food industry --- stimuli-responsive polymers --- field-effect transistor --- Marangoni convection --- polymer scaffold --- collagen --- biomedicine --- thin films --- controlled release --- tension gradient --- monolayer
Listing 1 - 1 of 1 |
Sort by
|