Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Geo-information technology has been playing an ever more important role in environmental monitoring, land resource quantification and mapping, geo-disaster damage and risk assessment, urban planning and smart city development. This book focuses on the fundamental and applied research in these domains, aiming to promote exchanges and communications, share the research outcomes of scientists worldwide and to put these achievements better social use. This Special Issue collects fourteen high-quality research papers and is expected to provide a useful reference and technical support for graduate students, scientists, civil engineers and experts of governments to valorize scientific research.
Research & information: general --- street view --- remote sensing --- urban environmental elements --- ensemble learning --- green view --- sky view --- building view --- SHAP --- convolutional neural network --- water body extraction --- GaoFen-1 --- multiple scales --- deep learning --- Line Simplification --- Douglas-Peucker Algorithm --- Monotonic Chain --- Dichotomy --- vegetation --- partial correlation analysis --- trend prediction --- the source region of the Yellow River --- revetment --- damage signature --- dense point clouds --- unmanned aerial vehicle (UAV) --- gradient operator --- OpenStreetMap (OSM) --- road network density --- urban economy --- regression analysis --- spatial metric --- pre-hospital emergency --- spatiotemporal demand --- GPS data --- seasonal clustering --- short-term forecast --- tourism flow forecast --- optimization algorithm --- Random Forest --- landslide hazard risk --- integrated multisource dataset --- field sample rasterization --- weight assignment --- urban forest --- forest biomass --- biomass distribution --- geographic detector --- poverty probability --- random forest --- nighttime lights --- spatiotemporal characteristics --- geographic information systems --- land cover --- land dynamics --- regional studies --- sustainable planning --- ultra-peripheral territories --- fire station --- fire risk evaluation --- parcel-pickup lockers --- site-suitability analysis --- GIS-based --- bivariate logistic regression model --- suitability classification --- n/a
Choose an application
Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI, fCover, plant height, and biomass) and biochemical parameters (leaf pigmentation and water content) directly influence the radiative transfer process of sunlight in vegetation, determining the amount of radiation measured by passive sensors in the visible and infrared portions of the electromagnetic spectrum. Optical remote sensing (RS) methods build relationships exploiting in situ measurements and/or as outputs of physical canopy radiative transfer models. The increased availability of passive (radar and LiDAR) RS data has fostered their use in many applications for the analysis of land surface properties and processes, thanks also to their insensitivity to weather conditions and the capability to exploit rich structural and textural information. Data fusion and multi-sensor integration techniques are pressing topics to fully exploit the information conveyed by both optical and microwave bands.
artificial neural network --- downscaling --- simulation --- 3D point cloud --- European beech --- consistency --- adaptive threshold --- evaluation --- photosynthesis --- geographic information system --- P-band PolInSAR --- validation --- density-based clustering --- structure from motion (SfM) --- EPIC --- Tanzania --- signal attenuation --- trunk --- canopy closure --- REDD+ --- unmanned aerial vehicle (UAV) --- forest --- recursive feature elimination --- Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) --- aboveground biomass --- random forest --- uncertainty --- household survey --- spectral information --- forests biomass --- root biomass --- biomass --- unmanned aerial vehicle --- Brazilian Amazon --- VIIRS --- global positioning system --- LAI --- photochemical reflectance index (PRI) --- allometric scaling and resource limitation --- R690/R630 --- modelling aboveground biomass --- leaf area index --- forest degradation --- spectral analyses --- terrestrial laser scanning --- BAAPA --- leaf area index (LAI) --- stem volume estimation --- tomographic profiles --- polarization coherence tomography (PCT) --- canopy gap fraction --- automated classification --- HemiView --- remote sensing --- multisource remote sensing --- Pléiades imagery --- photogrammetric point cloud --- farm types --- terrestrial LiDAR --- altitude --- RapidEye --- forest aboveground biomass --- recovery --- southern U.S. forests --- NDVI --- machine-learning --- conifer forest --- satellite --- chlorophyll fluorescence (ChlF) --- tree heights --- phenology --- point cloud --- local maxima --- clumping index --- MODIS --- digital aerial photograph --- Mediterranean --- hemispherical sky-oriented photo --- managed temperate coniferous forests --- fixed tree window size --- drought --- GLAS --- smartphone-based method --- forest above ground biomass (AGB) --- forest inventory --- over and understory cover --- sampling design
Choose an application
This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- UAS --- multiple sensors --- vegetation index --- leaf nitrogen accumulation --- plant nitrogen accumulation --- pasture quality --- airborne hyperspectral imaging --- random forest regression --- sun-induced chlorophyll fluorescence (SIF) --- SIF yield indices --- upward --- downward --- leaf nitrogen concentration (LNC) --- wheat (Triticum aestivum L.) --- laser-induced fluorescence --- leaf nitrogen concentration --- back-propagation neural network --- principal component analysis --- fluorescence characteristics --- canopy nitrogen density --- radiative transfer model --- hyperspectral --- winter wheat --- flooded rice --- pig slurry --- aerial remote sensing --- vegetation indices --- N recommendation approach --- Mediterranean conditions --- nitrogen --- vertical distribution --- plant geometry --- remote sensing --- maize --- UAV --- multispectral imagery --- LNC --- non-parametric regression --- red-edge --- NDRE --- dynamic change model --- sigmoid curve --- grain yield prediction --- leaf chlorophyll content --- red-edge reflectance --- spectral index --- precision N fertilization --- chlorophyll meter --- NDVI --- NNI --- canopy reflectance sensing --- N mineralization --- farmyard manures --- Triticum aestivum --- discrete wavelet transform --- partial least squares --- hyper-spectra --- rice --- nitrogen management --- reflectance index --- multiple variable linear regression --- Lasso model --- Multiplex®3 sensor --- nitrogen balance index --- nitrogen nutrition index --- nitrogen status diagnosis --- precision nitrogen management --- terrestrial laser scanning --- spectrometer --- plant height --- biomass --- nitrogen concentration --- precision agriculture --- unmanned aerial vehicle (UAV) --- digital camera --- leaf chlorophyll concentration --- portable chlorophyll meter --- crop --- PROSPECT-D --- sensitivity analysis --- UAV multispectral imagery --- spectral vegetation indices --- machine learning --- plant nutrition --- canopy spectrum --- non-destructive nitrogen status diagnosis --- drone --- multispectral camera --- SPAD --- smartphone photography --- fixed-wing UAV remote sensing --- random forest --- canopy reflectance --- crop N status --- Capsicum annuum --- proximal optical sensors --- Dualex sensor --- leaf position --- proximal sensing --- cross-validation --- feature selection --- hyperparameter tuning --- image processing --- image segmentation --- nitrogen fertilizer recommendation --- supervised regression --- RapidSCAN sensor --- nitrogen recommendation algorithm --- in-season nitrogen management --- nitrogen use efficiency --- yield potential --- yield responsiveness --- standard normal variate (SNV) --- continuous wavelet transform (CWT) --- wavelet features optimization --- competitive adaptive reweighted sampling (CARS) --- partial least square (PLS) --- grapevine --- hyperparameter optimization --- multispectral imaging --- precision viticulture --- RGB --- multispectral --- coverage adjusted spectral index --- vegetation coverage --- random frog algorithm --- active canopy sensing --- integrated sensing system --- discrete NIR spectral band data --- soil total nitrogen concentration --- moisture absorption correction index --- particle size correction index --- coupled elimination
Listing 1 - 3 of 3 |
Sort by
|