Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Choose an application
Choose an application
Suzuki–Miyaura cross-coupling remains a powerful tool in organic synthesis for C–C bond formation and has various industrial applications, for example, the synthesis of pharmaceuticals and materials. Intensive research efforts are being made into finding ways of improving and expanding the scope of this process, and the development of more efficient catalytic systems for this extremely important reaction is still a hot research topic of enormous academic and industrial interest. This Special Issue, consisting of four reviews, two communications and six articles, focuses on recent promising research and novel trends in the broad field of Suzuki–Miyaura cross-coupling employing a range of different palladium catalysts. Homogeneous or heterogeneous catalysis in organic or aqueous medium, using conventional conditions or non-conventional techniques such as microwave and ultrasound irradiation, grinding and photo-activated processes as green chemistry approaches, as well as continuous flow technology are included. The catalysts described herein are unsupported metal complexes, catalysts immobilized on solid supports, ligand-free catalytic systems or metal nanoparticles.
Phosphane-free ligand --- Metal nanoparticles --- Heterogeneous catalysis --- Cross-coupling --- Multiphase catalysis --- C-C bond formation --- Phosphane ligand --- Homogeneous catalysis --- Metal complex --- Noble metals
Choose an application
"Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results [on] homogeneous, heterogeneous, and enzymatic catalysis."--Publisher
Enzymology --- biotechnologie --- bioengineering --- Biotechnology --- Catalysis --- Catalyse --- Periodicals. --- Périodiques --- Chemistry --- Engineering --- Chemical Engineering --- General and Others --- Kinetics --- Physical Chemistry --- Catalysis. --- biochemie --- katalysatoren --- enzymen --- homogeneous catalysis --- heterogeneous catalysis --- enzymatic catalysis --- Physical & Theoretical Chemistry --- Activation (Chemistry) --- Chemistry, Physical and theoretical --- Surface chemistry
Choose an application
The chemical industry is essential in the daily human life of modern society; despite the misconception about the real need for chemical production, everyone enjoys the benefit of the chemical progress. However, the chemical industry generates a large variety of products, including (i) basic chemicals, e.g., polymers, petrochemicals, and basic inorganics; (ii) specialty chemicals for crop protection, paints, inks, colorants, textiles, paper, and engineering; and (iii) consumer chemicals, including detergents, soaps, etc. For these reasons, chemists in both academia and industry are challenged with developing green and sustainable chemical production toward the full-recycling of feedstocks and waste. Aiming to improve the intensification of the process, chemists have established chemical reactions based on catalysis, as well as alternative technologies, such as continuous flow. The aim of this book is to cover promising recent research and novel trends in the field of novel catalytic reactions (homogeneous, heterogeneous, and enzymatic, as well as their combinations) in continuous flow conditions. A collection of recent contribution for conversion of starting material originated from petroleum resources or biomass into highly-added value chemicals are reported.
n/a --- dynamic mesh --- catalytic hydrodechlorination --- Pd catalyst --- fuel reactor --- catalysis --- alcohols --- Rhynchophorus ferrugineus --- ketones --- numerical prediction --- heterogeneous catalyst --- 5-hydroxymethylfurfural (HMF) --- CO2 capture --- chemical looping combustion --- SBA-15 --- biodiesel --- ?-valerolactone --- (bio) catalysis --- economizer --- erosion rate --- magnesium --- circulating fluidized bed --- continuous reactor --- erosion evolution --- kinetics --- Meerwein–Ponndorf–Verley reduction --- flow microreactor --- CFD --- micro reactor --- Oppenauer oxidation --- chlorophenols --- succinate --- aldehydes --- multiphase catalysis --- methyl levulinate --- pheromone --- zirconium --- flow chemistry --- continuous flow --- biomass --- glucose --- oxidation --- dialkyl succinates --- tube-in-tube --- aerobic --- chemo-enzymatic catalysis --- homogeneous catalysis --- lipase Cal B --- expiry period --- titanium dioxide --- Meerwein-Ponndorf-Verley reduction
Choose an application
Since their discovery, multi-walled carbon nanotubes (MWCNTs) have received tremendous attention due to their unique electrical, optical, physical, chemical, and mechanical properties. Remarkable advances have been made in the synthesis, purification, structural characterization, functionalization, and application of MWCNTs. Their particular characteristics make them well suited for a plethora of applications in a number of fields, namely nanoelectronics, nanofluids, energy management, (electro)catalysis, materials science, construction of (bio)sensors based on different detection schemes, multifunctional nanoprobes for biomedical imaging, and sorbents for sample preparation or removal of contaminants from wastewater. They are also useful as anti-bacterial agents, drug delivery nanocarriers, etc. The current relevant application areas are countless. This Special Issue presents original research and review articles that address advances, trends, challenges, and future perspectives regarding synthetic routes, structural features, properties, behaviors, and industrial or scientific applications of MWCNTs in established and emerging areas.
graphene oxide --- n/a --- Multi-Walled Carbon Nanotube (MWCNT) --- elution --- gold nanoparticles --- MHD --- heck reaction --- drug delivery --- carbon-nanotubes --- water based nanofluid --- zeolitic imidazolate framework --- Ionic liquid --- electroanalysis --- curved stretching sheet --- multiwalled carbon nanotubes --- lubricating oil additives --- hydrophobic drugs --- agricultural irrigation water --- polarity --- cerium oxide --- adsorption --- electrical properties --- non-linear thermal radiation --- electrochemical properties --- nanomaterials --- radar absorbing materials --- chloride diffusion --- RAFT polymerization --- synthesis methods --- gold(III) --- mechanical properties --- dissolution rate --- carbon materials --- electrochemical sensors --- magnetic solid phase extraction --- silicone rubber --- Single-Walled Carbon Nanotube (SWCNT) --- Pd-CNT nanohybrids --- kinetics --- nonylphenol --- boundary layer --- Casson model --- sensing applications --- organochlorine pesticides --- composites --- multi-wall carbon nanotube (MWCNT) --- polymeric composites --- carbon nanotubes --- structural --- azide-alkyne click chemistry --- functionalized carbon nanotubes --- heat generation --- EMI shielding --- gold(I) --- cement mortars --- semi-homogeneous catalysis --- functionalized CNTs --- nanomedicine --- multi-walled carbon nanotubes --- numerical solution --- PMMA --- HAM --- complex permittivity --- thermal radiation --- stretching sheet
Choose an application
Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.
cyclic operation --- n/a --- nickel catalysts --- regeneration --- Cu/SSZ-13 --- syngas --- NH3-SCR --- oxysulfate --- Ni-catalyst --- MW incinerator --- iso-octane --- hydrogenation --- dry reforming of methane --- oxysulfide --- Co-Zn/H-Beta --- Low-temperature catalyst --- Rh catalysts --- deactivation --- vanadia species --- SO2 poisoning --- vehicle emission control --- barium carbonate --- sodium ions --- sulfur deactivation --- tetragonal zirconia --- sulfur poisoning --- Liquefied natural gas --- water --- deactivation by coking --- phase stabilization --- catalyst --- NO removal --- physico-chemical characterization --- octanol --- SEM --- aluminum sulfate --- oxygen storage capacity --- unusual deactivation --- diesel --- nitrous oxide --- exhaust gas --- over-reduction --- poisoning --- catalyst deactivation --- ammonium sulfates --- CO2 reforming --- SO3 --- Rh --- in situ regeneration --- copper --- V2O5–WO3/TiO2 catalysts --- palladium sulfate --- Selective Catalytic Reduction (SCR) --- biogas --- thermal stability --- phthalic anhydride --- octanal --- natural gas --- sulfur-containing sodium salts --- washing --- coke deposition --- vanadia-titania catalyst --- CPO reactor --- homogeneous catalysis --- NOx reduction by C3H8 --- nitrogen oxides --- effect of flow rate --- DeNOx --- catalytic methane combustion --- deactivation mechanism --- TEM --- catalyst durability --- V2O5-WO3/TiO2 catalysts
Choose an application
The amide bond represents a privileged motif in chemistry. The recent years have witnessed an explosion of interest in the development of new chemical transformations of amides. These developments cover an impressive range of catalytic N–C bond activation in electrophilic, Lewis acid, radical, and nucleophilic reaction pathways, among other transformations. Equally relevant are structural and theoretical studies that provide the basis for chemoselective manipulation of amidic resonance. This monograph on amide bonds offers a broad survey of recent advances in activation of amides and addresses various approaches in the field.
N-heterocyclic carbene --- non planar amide --- ruthenium (Ru) --- physical organic chemistry --- gemcitabine prodrug --- pyramidal amides --- bridged sultams --- catalysis --- dipeptides --- N-(1-naphthyl)acetamide --- C-N ? bond cleavage --- steric effects --- peptide bond cleavage --- transition-metal-free --- palladium --- N-heterocyclic carbenes (NHCs) --- addition reaction --- C–O activation --- rhodium --- metal complexes --- carbanions --- thioamidation --- amide bond --- intramolecular catalysis --- antiviral activity --- additivity principle --- pre-catalysts --- C–N bond cleavage --- bridged lactams --- C–H acidity --- arynes --- twisted amides --- organic synthesis --- amination --- Suzuki-Miyaura --- tert-butyl --- cyclopentadienyl complexes --- C-S formation --- enzymes --- DFT study --- sulfonamide bond --- N --- HERON reaction --- primaquine --- entropy --- amide activation --- amidation --- synthesis --- amide hydrolysis --- carbonylicity --- amide bond activation --- amide bond resonance --- aminosulfonylation --- molecular dynamics --- model compound --- in situ --- amide --- homogeneous catalysis --- heterocycles --- anomeric effect --- multi-component coupling reaction --- kinetic --- excited state --- C–H bond cleavage --- palladium catalysis --- amides --- thiourea --- formylation --- alkynes --- cis/trans isomerization --- amide C–N bond activation --- intein --- C-H functionalization --- succindiamide --- amide bonds --- crown ether --- aminoacylation --- directing groups --- cytostatic activity --- reaction thermodynamics --- acyl transfer --- transition metals --- N-dimethylformamide --- DMAc --- acylative cross-coupling --- C-H/C-N activation --- nickel catalysis --- antibacterial screening --- sodium --- aryl thioamides --- Winkler-Dunitz parameters --- catalyst --- N-dimethylacetamide --- base-catalyed hydrolysis --- nitrogen heterocycles --- cross-coupling --- insertion --- amidicity --- nitro-aci tautomerism --- activation --- carbonylation --- transamidation --- amine --- distortion --- Pd-catalysis --- rotational barrier energy --- hypersensitivity --- N–C activation --- metabolic stability --- [2+2+2] annulation --- twisted amide --- protease --- cyanation --- amide resonance --- trialkylborane --- catalysts --- biofilm eradication --- pharmacokinetics --- pancreatic cancer cells --- DMF --- aryl esters --- Michael acceptor --- fumardiamide --- water solvation --- ester bond activation --- cyclization --- nuclear magnetic resonance --- secondary amides --- reaction mechanism --- density functional theory --- density-functional theory --- amino acid transporters
Listing 1 - 8 of 8 |
Sort by
|