Narrow your search

Library

KU Leuven (7)

UGent (7)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULiège (6)

VIVES (6)

FARO (5)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (2)

2019 (3)

2015 (1)

1972 (1)

Listing 1 - 7 of 7
Sort by

Book
Applied Analysis of Ordinary Differential Equations
Author:
ISBN: 3039217275 3039217267 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

One might say that ordinary differential equations (notably, in Isaac Newton’s analysis of the motion of celestial bodies) had a central role in the development of modern applied mathematics. This book is devoted to research articles which build upon this spirit: combining analysis with the applications of ordinary differential equations (ODEs). ODEs arise across a spectrum of applications in physics, engineering, geophysics, biology, chemistry, economics, etc., because the rules governing the time-variation of relevant fields is often naturally expressed in terms of relationships between rates of change. ODEs also emerge in stochastic models—for example, when considering the evolution of a probability density function—and in large networks of interconnected agents. The increasing ease of numerically simulating large systems of ODEs has resulted in a plethora of publications in this area; nevertheless, the difficulty of parametrizing models means that the computational results by themselves are sometimes questionable. Therefore, analysis cannot be ignored. This book comprises articles that possess both interesting applications and the mathematical analysis driven by such applications.


Book
Nanoelectronic Materials, Devices and Modeling
Authors: ---
ISBN: 3039212265 3039212257 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry.

Keywords

quantum mechanical --- n/a --- neuromorphic computation --- off-current (Ioff) --- double-gate tunnel field-effect-transistor --- topological insulator --- back current blocking layer (BCBL) --- CMOS power amplifier IC --- information integration --- distributed Bragg --- spike-timing-dependent plasticity --- electron affinity --- enhancement-mode --- current collapse --- gallium nitride (GaN) --- band-to-band tunneling --- vertical field-effect transistor (VFET) --- ionic liquid --- luminescent centres --- thermal coupling --- vision localization --- PC1D --- UAV --- ZnO/Si --- dual-switching transistor --- memristor --- field-effect transistor --- higher order synchronization --- shallow trench isolation (STI) --- memristive device --- on-current (Ion) --- low voltage --- reflection transmision method --- dielectric layer --- source/drain (S/D) --- high efficiency --- nanostructure synthesis --- InAlN/GaN heterostructure --- supercapacitor --- high-electron mobility transistor (HEMTs) --- heterojunction --- p-GaN --- recessed channel array transistor (RCAT) --- gate field effect --- charge injection --- saddle FinFET (S-FinFET) --- L-shaped tunnel field-effect-transistor --- conductivity --- energy storage --- hierarchical --- PECVD --- sample grating --- MISHEMT --- bistability --- threshold voltage (VTH) --- bandgap tuning --- oscillatory neural networks --- UV irradiation --- Mott transition --- third harmonic tuning --- topological magnetoelectric effect --- cross-gain modulation --- 2D material --- solar cells --- silicon on insulator (SOI) --- Green’s function --- optoelectronic devices --- semiconductor optical amplifier --- ZnO films --- graphene --- AlGaN/GaN --- polarization effect --- two-photon process --- conductive atomic force microscopy (cAFM) --- 2DEG density --- vanadium dioxide --- interface traps --- potential drop width (PDW) --- pattern recognition --- drain-induced barrier lowering (DIBL) --- atomic layer deposition (ALD) --- normally off power devices --- gate-induced drain leakage (GIDL) --- insulator–metal transition (IMT) --- zinc oxide --- synaptic device --- subthreshold slope (SS) --- landing --- silicon --- corner-effect --- conditioned reflex --- quantum dot --- gallium nitride --- bismuth ions --- conduction band offset --- variational form --- Green's function --- insulator-metal transition (IMT)


Book
Miniaturized Transistors
Authors: ---
ISBN: 3039210114 3039210106 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Keywords

MOSFET --- n/a --- total ionizing dose (TID) --- low power consumption --- process simulation --- two-dimensional material --- negative-capacitance --- power consumption --- technology computer aided design (TCAD) --- thin-film transistors (TFTs) --- band-to-band tunneling (BTBT) --- nanowires --- inversion channel --- metal oxide semiconductor field effect transistor (MOSFET) --- spike-timing-dependent plasticity (STDP) --- field effect transistor --- segregation --- systematic variations --- Sentaurus TCAD --- indium selenide --- nanosheets --- technology computer-aided design (TCAD) --- high-? dielectric --- subthreshold bias range --- statistical variations --- fin field effect transistor (FinFET) --- compact models --- non-equilibrium Green’s function --- etching simulation --- highly miniaturized transistor structure --- compact model --- silicon nanowire --- surface potential --- Silicon-Germanium source/drain (SiGe S/D) --- nanowire --- plasma-aided molecular beam epitaxy (MBE) --- phonon scattering --- mobility --- silicon-on-insulator --- drain engineered --- device simulation --- variability --- semi-floating gate --- synaptic transistor --- neuromorphic system --- theoretical model --- CMOS --- ferroelectrics --- tunnel field-effect transistor (TFET) --- SiGe --- metal gate granularity --- buried channel --- ON-state --- bulk NMOS devices --- ambipolar --- piezoelectrics --- tunnel field effect transistor (TFET) --- FinFETs --- polarization --- field-effect transistor --- line edge roughness --- random discrete dopants --- radiation hardened by design (RHBD) --- low energy --- flux calculation --- doping incorporation --- low voltage --- topography simulation --- MOS devices --- low-frequency noise --- high-k --- layout --- level set --- process variations --- subthreshold --- metal gate stack --- electrostatic discharge (ESD) --- non-equilibrium Green's function


Book
Fractional Calculus Operators and the Mittag-Leffler Function
Author:
ISBN: 3036553681 3036553673 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on applications of the theory of fractional calculus in numerical analysis and various fields of physics and engineering. Inequalities involving fractional calculus operators containing the Mittag–Leffler function in their kernels are of particular interest. Special attention is given to dynamical models, magnetization, hypergeometric series, initial and boundary value problems, and fractional differential equations, among others.

Keywords

Research & information: general --- Mathematics & science --- fractional derivative --- generalized Mittag-Leffler kernel (GMLK) --- Legendre polynomials --- Legendre spectral collocation method --- dynamical systems --- random time change --- inverse subordinator --- asymptotic behavior --- Mittag–Leffler function --- data fitting --- magnetization --- magnetic fluids --- Gamma function --- Psi function --- Pochhammer symbol --- hypergeometric function 2F1 --- generalized hypergeometric functions tFu --- Gauss’s summation theorem for 2F1(1) --- Kummer’s summation theorem for 2F1(−1) --- generalized Kummer’s summation theorem for 2F1(−1) --- Stirling numbers of the first kind --- Hilfer–Hadamard fractional derivative --- Riemann–Liouville fractional derivative --- Caputo fractional derivative --- fractional differential equations --- inclusions --- nonlocal boundary conditions --- existence and uniqueness --- fixed point --- gamma function --- Beta function --- Mittag-Leffler function --- Generalized Mittag-Leffler functions --- generalized hypergeometric function --- Fox–Wright function --- recurrence relations --- Riemann–Liouville fractional calculus operators --- (α, h-m)-p-convex function --- Fejér–Hadamard inequality --- extended generalized fractional integrals --- Mittag–Leffler functions --- initial value problems --- Laplace transform --- exact solution --- Chebyshev inequality --- Pólya-Szegö inequality --- fractional integral operators --- Wright function --- Srivastava’s polynomials --- fractional calculus operators --- Lavoie–Trottier integral formula --- Oberhettinger integral formula --- fractional partial differential equation --- boundary value problem --- separation of variables --- Mittag-Leffler --- Abel-Gontscharoff Green’s function --- Hermite-Hadamard inequalities --- convex function --- κ-Riemann-Liouville fractional integral --- Dirichlet averages --- B-splines --- dirichlet splines --- Riemann–Liouville fractional integrals --- hypergeometric functions of one and several variables --- generalized Mittag-Leffler type function --- Srivastava–Daoust generalized Lauricella hypergeometric function --- fractional calculus --- Hermite–Hadamard inequality --- Fox H function --- subordinator and inverse stable subordinator --- Lamperti law --- order statistic --- n/a --- Gauss's summation theorem for 2F1(1) --- Kummer's summation theorem for 2F1(−1) --- generalized Kummer's summation theorem for 2F1(−1) --- Hilfer-Hadamard fractional derivative --- Riemann-Liouville fractional derivative --- Fox-Wright function --- Riemann-Liouville fractional calculus operators --- Fejér-Hadamard inequality --- Mittag-Leffler functions --- Pólya-Szegö inequality --- Srivastava's polynomials --- Lavoie-Trottier integral formula --- Abel-Gontscharoff Green's function --- Riemann-Liouville fractional integrals --- Srivastava-Daoust generalized Lauricella hypergeometric function --- Hermite-Hadamard inequality


Book
Boundary behavior of holomorphic functions of several complex variables
Author:
ISBN: 0691081093 9781400871261 1400871263 9780691620114 9780691081090 0691620113 9780691081090 0691646945 Year: 1972 Volume: 11 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book has as its subject the boundary value theory of holomorphic functions in several complex variables, a topic that is just now coming to the forefront of mathematical analysis. For one variable, the topic is classical and rather well understood. In several variables, the necessary understanding of holomorphic functions via partial differential equations has a recent origin, and Professor Stein's book, which emphasizes the potential-theoretic aspects of the boundary value problem, should become the standard work in the field.Originally published in 1972.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Mathematical potential theory --- Holomorphic functions --- Harmonic functions --- Holomorphic functions. --- Harmonic functions. --- Fonctions de plusieurs variables complexes. --- Functions of several complex variables --- Functions, Harmonic --- Laplace's equations --- Bessel functions --- Differential equations, Partial --- Fourier series --- Harmonic analysis --- Lamé's functions --- Spherical harmonics --- Toroidal harmonics --- Functions, Holomorphic --- Absolute continuity. --- Absolute value. --- Addition. --- Ambient space. --- Analytic function. --- Arbitrarily large. --- Bergman metric. --- Borel measure. --- Boundary (topology). --- Boundary value problem. --- Bounded set (topological vector space). --- Boundedness. --- Brownian motion. --- Calculation. --- Change of variables. --- Characteristic function (probability theory). --- Combination. --- Compact space. --- Complex analysis. --- Complex conjugate. --- Computation. --- Conformal map. --- Constant term. --- Continuous function. --- Coordinate system. --- Corollary. --- Cramer's rule. --- Determinant. --- Diameter. --- Dimension. --- Elliptic operator. --- Estimation. --- Existential quantification. --- Explicit formulae (L-function). --- Exterior (topology). --- Fatou's theorem. --- Function space. --- Green's function. --- Green's theorem. --- Haar measure. --- Half-space (geometry). --- Harmonic function. --- Hilbert space. --- Holomorphic function. --- Hyperbolic space. --- Hypersurface. --- Hölder's inequality. --- Invariant measure. --- Invertible matrix. --- Jacobian matrix and determinant. --- Line segment. --- Linear map. --- Lipschitz continuity. --- Local coordinates. --- Logarithm. --- Majorization. --- Matrix (mathematics). --- Maximal function. --- Measure (mathematics). --- Minimum distance. --- Natural number. --- Normal (geometry). --- Open set. --- Order of magnitude. --- Orthogonal complement. --- Orthonormal basis. --- Parameter. --- Poisson kernel. --- Positive-definite matrix. --- Potential theory. --- Projection (linear algebra). --- Quadratic form. --- Quantity. --- Real structure. --- Requirement. --- Scientific notation. --- Sesquilinear form. --- Several complex variables. --- Sign (mathematics). --- Smoothness. --- Subgroup. --- Subharmonic function. --- Subsequence. --- Subset. --- Summation. --- Tangent space. --- Theorem. --- Theory. --- Total variation. --- Transitive relation. --- Transitivity. --- Transpose. --- Two-form. --- Unit sphere. --- Unitary matrix. --- Vector field. --- Vector space. --- Volume element. --- Weak topology.


Book
Advances in Fundamental Physics
Author:
ISBN: 3036557466 3036557458 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue celebrates the opening of a new section of the journal Foundation: Physical Sciences. Theoretical and experimental studies related to various areas of fundamental physics are presented in this Special Issue. The published papers are related to the following topics: dark matter, electron impact excitation, second flavor of hydrogen atoms, quantum antenna, molecular hydrogen, molecular hydrogen ion, wave pulses, Brans-Dicke theory, hydrogen Rydberg atom, high-frequency laser field, relativistic mean field formalism, nonlocal continuum field theories, parallel universe, charge exchange, van der Waals broadening, greenhouse effect, strange and unipolar electromagnetic pulses, quasicrystals, Wilhelm-Weber’s electromagnetic force law, axions, photoluminescence, neutron stars, gravitational waves, diatomic molecular spectroscopy, information geometric measures of complexity. Among 21 papers published in this Special Issue, there are 5 reviews and 16 original research papers.

Keywords

Research & information: general --- Physics --- information geometry --- complexity --- classical and quantum physics --- self-simulation hypothesis --- principle of efficient language --- quasicrystals --- empires --- game of life --- emergence --- state sum models --- space–time couplings --- spatiotemporal --- ultrafast optics --- unipolar pulses --- few cycle pulses --- line-by-line --- greenhouse effect --- radiative fluxes --- thermal emission --- spectroscopy --- stark broadening --- atomic physics --- foundations of quantum mechanics --- molecular spectroscopy --- diatomic molecules --- symmetry transformations --- optical emission spectroscopy --- astrophysics --- neutron stars --- nuclear equation of state --- gravitational waves --- speed of sound --- tidal polarizability --- charge exchange --- second flavor of hydrogen atoms --- dark matter --- stark effect --- parallel universes --- multiverse --- preferred direction in the universe --- bulk flow --- four spatial dimensions --- nonlocal metamaterials --- multiscale structures --- fiber bundles --- superspace --- mathematical methods --- mathematical physics --- nonlocal continuum field theory --- semiconductor materials --- preformed cluster decay --- relativistic mean-field --- alpha-particle clustering --- neck-length --- hydrogenic atoms --- high-frequency laser field --- relativistic precession --- laser-controlled precession --- cosmological constant --- generalised Brans-Dicke theory --- Big Rip --- photoluminescence --- dispersive media --- axion --- space-time couplings --- bipolar pulses --- few-cycle pulses --- free-space wave equation --- space-time wave packets --- nondiffracting localized waves --- molecular hydrogen ion --- proton collisions --- molecular spectral bands --- quantum antennas --- quantum field theory --- relativistic quantum mechanics --- quantum radiation --- propagator --- Green’s function --- quantum engineering --- quantum technologies --- radiation pattern --- electron impact excitation of hydrogen atoms --- discrepancy between theories and experiments --- electron impact excitation of hydrogen molecules --- quantum mechanics --- particle–wave duality --- quantum jump --- quantum entanglement --- Weber’s electrodynamics --- Weber force --- field theory --- electromagnetism --- electrodynamics --- physics of elementary particles and fields --- magnetic field --- electric field --- electrical engineering --- fundamental physics


Book
Problems in Analysis : A Symposium in Honor of Salomon Bochner (PMS-31)
Author:
ISBN: 0691080763 132288496X 0691620687 0691647429 1400869315 Year: 2015 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present volume reflects both the diversity of Bochner's pursuits in pure mathematics and the influence his example and thought have had upon contemporary researchers.Originally published in 1971.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Mathematical analysis --- -Advanced calculus --- Analysis (Mathematics) --- Algebra --- Addresses, essays, lectures --- Mathematical analysis. --- -517.1 Mathematical analysis --- -Addresses, essays, lectures --- 517.1 Mathematical analysis --- 517.1. --- Approximation theory. --- System analysis. --- 517.1 --- Network analysis --- Network science --- Network theory --- Systems analysis --- System theory --- Mathematical optimization --- Theory of approximation --- Functional analysis --- Functions --- Polynomials --- Chebyshev systems --- Absolute continuity. --- Analytic continuation. --- Analytic function. --- Asymptotic expansion. --- Automorphism. --- Banach algebra. --- Banach space. --- Bessel function. --- Big O notation. --- Bounded operator. --- Branch point. --- Cauchy's integral formula. --- Cauchy's integral theorem. --- Characterization (mathematics). --- Cohomology. --- Commutative property. --- Compact operator. --- Compact space. --- Complex analysis. --- Complex number. --- Complex plane. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Coset. --- Covariance operator. --- Differentiable function. --- Differentiable manifold. --- Differential form. --- Dimension (vector space). --- Discrete group. --- Dominated convergence theorem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence class. --- Even and odd functions. --- Existential quantification. --- First variation. --- Formal power series. --- Fréchet derivative. --- Fubini's theorem. --- Function space. --- Functional analysis. --- Fundamental group. --- Green's function. --- Haar measure. --- Hermite polynomials. --- Hermitian symmetric space. --- Holomorphic function. --- Hyperbolic partial differential equation. --- Infimum and supremum. --- Infinite product. --- Integral equation. --- Lebesgue measure. --- Lie algebra. --- Lie group. --- Linear map. --- Markov chain. --- Meromorphic function. --- Metric space. --- Monotonic function. --- Natural number. --- Norm (mathematics). --- Normal subgroup. --- Null set. --- Partition of unity. --- Pointwise. --- Polynomial. --- Power series. --- Pseudogroup. --- Riemann surface. --- Riemannian manifold. --- Schrödinger equation. --- Self-adjoint operator. --- Self-adjoint. --- Semigroup. --- Semisimple algebra. --- Sesquilinear form. --- Sign (mathematics). --- Singular perturbation. --- Special case. --- Spectral theory. --- Stokes' theorem. --- Subgroup. --- Submanifold. --- Subset. --- Support (mathematics). --- Symplectic geometry. --- Symplectic manifold. --- Theorem. --- Uniform convergence. --- Unitary operator. --- Unitary representation. --- Upper and lower bounds. --- Vector bundle. --- Vector field. --- Volterra's function. --- Weierstrass theorem. --- Zorn's lemma.

Listing 1 - 7 of 7
Sort by