Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This book is a ""world first"", since the furfural industry has been traditionally secretive to the point of appearing shrouded in clouds of mystery. Even renowned encyclopedic works have published but scant and often erroneous information on the subject. Striking a healthy balance between theory and practice, the book leads the reader from reaction mechanisms and kinetics to the technology of making furfural by various old and new processes, using conventional raw materials or sulfite waste liquor. Detailed discussions of means of increasing the yield are of great chemical and technologi
Furfural. --- Furfural --- Derivatives.
Choose an application
This book is a ""world first"", since the furfural industry has been traditionally secretive to the point of appearing shrouded in clouds of mystery. Even renowned encyclopedic works have published but scant and often erroneous information on the subject. Striking a healthy balance between theory and practice, the book leads the reader from reaction mechanisms and kinetics to the technology of making furfural by various old and new processes, using conventional raw materials or sulfite waste liquor. Detailed discussions of means of increasing the yield are of great chemical and technologi
Furfural. --- Furfural --- Ant oil, Artificial --- Artificial ant oil --- Bran oil --- Furaldehyde --- Furfuraldehyde --- Furfurly aldehyde --- Furfurol --- Furol --- Pyromucic aldehyde --- Aldehydes --- Furans --- Derivatives.
Choose an application
In the last decades, inedible lignocellulosic biomasses have attracted significant attention for being abundant resources that are not in competition with agricultural land or food production and, therefore, can be used as starting renewable material for the production of a wide variety of platform chemicals. The three main components of lignocellulosic biomasses are cellulose, hemicellulose and lignin, complex biopolymers that can be converted into a pool of platform molecules including sugars, polyols, alchols, ketons, ethers, acids and aromatics. Various technologies have been explored for their one-pot conversion into chemicals, fuels and materials. However, in order to develop new catalytic processes for the selective production of desired products, a complete understanding of the molecular aspects of the basic chemistry and reactivity of biomass derived molecules is still crucial. This Special Issue reports on recent progress and advances in the catalytic valorization of cellulose, hemicellulose and lignin model molecules promoted by novel heterogeneous systems for the production of energy, fuels and chemicals.
n/a --- hemicellulose --- catalytic transfer hydrogenolysis reactions --- furfural --- ZSM-5 --- syngas --- renewable aromatics --- Diels–Alder --- lignin --- hydroisomerization --- levulinic acid --- bio-oil upgrade --- metal ferrites --- aromatic ethers --- hierarchical zeolites --- Chilean natural zeolites --- bioethanol --- renewable p-xylene --- desilication --- dimethylfuran --- GC/MS characterization --- biomass --- H-donor molecules --- heterogeneous catalysis --- polyols --- Brønsted acids sites --- spinels --- solketal --- glycerol --- chemical-loop reforming --- zeolite --- cellulose --- insulating oils --- hydrogenolysis --- lignocellulosic biomasses --- bio-insulating oil --- glycidol --- Diels-Alder
Choose an application
Materials play a very important role in the technological development of a society. As a consequence, the continuous demand for more advanced and sophisticated applications is closely linked to the availability of innovative materials. Although aspects related to the study, the synthesis and the applications of materials are of interdisciplinary interest, in the last few years, great attention has been paid to the development of advanced materials for environmental preservation and sustainable energy technologies, such as gaseous pollutant monitoring, waste water treatment, catalysis, carbon dioxide valorization, green fuel production, energy saving, water adsorption and clean technologies. This Special Issue aims at covering the current design, synthesis and characterization of innovative advanced materials, as well as novel nanotechnologies able to offer promising solutions to the these pressing themes.
Technology: general issues --- History of engineering & technology --- anaerobic digestion --- anchovies --- biorefinery --- circular economy --- d-limonene --- granular activated carbon --- inhibition --- orange peel waste (OPW) --- hydrothermal carbonization --- hydrochar --- 5-hydroxymethylfurfural (5-HMF) --- furfural (FU) --- levulinic acid (LA) --- nanomaterials --- MOS --- resistive sensor --- tin oxide --- fermentation --- diacetyl --- lithium chloride hydrate --- composite foam --- deliquescence --- thermochemical storage --- in situ characterization --- ionic liquids --- heat storage --- thermal stability --- HRMAS NMR --- FTIR --- zinc oxide --- gas sensor --- hexanal --- 1-pentanol --- 1-octen-3-ol --- MOX --- plasmonic nanoparticles --- silicon solar cell --- graphene --- short-circuit current density --- open-circuit voltage --- power conversion efficiency --- n/a
Choose an application
The use of biomass and organic waste material as a primary resource for the production of fuels, chemicals, and electric power is of growing significance in light of the environmental issues associated with the use of fossil fuels. For this reason, it is vital that new and more efficient technologies for the conversion of biomass are investigated and developed. Today, various advanced methods can be used for the conversion of biomass. These methods are broadly classified into thermochemical conversion, biochemical conversion, and electrochemical conversion. This book collects papers that consider various aspects of sustainability in the conversion of biomass into valuable products, covering all the technical stages from biomass production to residue management. In particular, it focuses on experimental and simulation studies aiming to investigate new processes and technologies on the industrial, pilot, and bench scales.
Research & information: general --- Physics --- biomass pellet --- laser-induced breakdown spectroscopy --- chemometrics --- quality indexes --- biogas --- circular economy --- bioeconomy --- wastes --- energy --- R.E.S --- biomass --- anaerobic --- digestion --- agriculture --- livestock --- Greece --- biorefinery --- absorbent hygiene product --- waste --- gasification --- devolatilization --- pyrolysis --- fluidized bed --- diapers --- cellulosic fraction --- chemical looping --- autothermal --- pilot plant --- Açaí --- residual seeds --- bio-oil --- distillation --- gasoline --- light kerosene --- kerosene-like fuel --- torrefaction --- agricultural by-products --- mixing ratios --- solid fuel --- pellet evaluation --- Açaí seeds --- hydrothermal carbonization --- hot compressed water --- process analysis --- HMF --- furfural --- acetic acid --- mass production --- corn stover --- hydrothermal process --- hydrochar --- adsorption --- thermo-gravimetric analysis --- scanning electron microscopy --- X-ray diffraction --- BET analysis --- disposable masks --- devolatilization tests --- Aspen Plus ®simulation --- tar analysis --- ultrasonic --- components fractionation --- lignocellulose --- ethanol treatment --- biomass gasification --- dual bubbling bed gasifier --- innovative pilot scale gasifier --- H2-rich syngas
Listing 1 - 5 of 5 |
Sort by
|