Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
Algebraic functions. --- Algebraic functions. --- Factors (Algebra). --- Factors (Algebra).
Choose an application
Factors (Algebra). --- Numerical calculations. --- Functions.
Choose an application
Factors (Algebra) -- Tables. --- Factors (Algebra) --- Mathematics --- Physical Sciences & Mathematics --- Algebra --- Tables --- Factorization (Mathematics)
Choose an application
Functional analysis --- 51 --- Von Neumann algebras --- Factors (Algebra) --- Algebra --- Factorization (Mathematics) --- Algebras, Von Neumann --- Algebras, W --- Neumann algebras --- Rings of operators --- W*-algebras --- C*-algebras --- Hilbert space --- Mathematics --- Von Neumann algebras. --- Factors (Algebra). --- 51 Mathematics
Choose an application
Corina Keller studies non-perturbative facets of abelian Chern-Simons theories. This is a refinement of the entirely perturbative approach to classical Chern-Simons theory via homotopy factorization algebras of observables that arise from the associated formal moduli problem describing deformations of flat principal bundles with connections over the spacetime manifold. The author shows that for theories with abelian group structure, this factorization algebra of classical observables comes naturally equipped with an action of the gauge group, which allows to encode non-perturbative effects in the classical observables. Contents Gauge Theory Differential Graded Algebras Differential Graded Lie Algebras and Derived Deformation Theory Factorization Algebras Equivariant Factorization Algebras from Abelian Chern-Simons Theory Target Groups Scientists and students in the field of mathematical physics, theoretical physics and especially mathematics with focus on homotopy theory and homological algebra About the Author Corina Keller currently is a doctoral student in the research group of Prof. Dr. Damien Calaque at the Université Montpellier, France. She is mostly interested in the mathematical study of field theories. Her master’s thesis was supervised by PD Dr. Alessandro Valentino and Prof. Dr. Alberto Cattaneo at Zurich University, Switzerland.
Factors (Algebra) --- Algebra. --- Mathematical Physics. --- Category Theory, Homological Algebra. --- Quantum Field Theories, String Theory. --- Mathematics --- Mathematical analysis --- Mathematical physics. --- Category theory (Mathematics). --- Homological algebra. --- Quantum field theory. --- String theory. --- Models, String --- String theory --- Nuclear reactions --- Relativistic quantum field theory --- Field theory (Physics) --- Quantum theory --- Relativity (Physics) --- Homological algebra --- Algebra, Abstract --- Homology theory --- Category theory (Mathematics) --- Algebra, Homological --- Algebra, Universal --- Group theory --- Logic, Symbolic and mathematical --- Topology --- Functor theory --- Physical mathematics --- Physics
Choose an application
Algebra. --- Mathematics --- Mathematical analysis --- Àlgebra --- Matemàtica --- Àlgebra universal --- Algorismes --- Anàlisi combinatòria --- Àlgebra commutativa --- Anàlisi diofàntica --- Anàlisi espinorial --- Anàlisi p-àdica --- Àlgebra multilineal --- Àlgebres associatives --- Àlgebres no commutatives --- Combinatòria (Matemàtica) --- Congruències i residus --- Determinants (Matemàtica) --- Equacions --- Estructures algebraiques ordenades --- Factors (Àlgebra) --- Formes (Matemàtica) --- Interpolació (Matemàtica) --- Logaritmes --- Permutacions --- Representacions d'àlgebres --- Sèries (Matemàtica) --- Successions (Matemàtica) --- Teorema del binomi --- Teoria de grups --- Teoria de nombres --- Teoria de la dualitat (Matemàtica) --- Anàlisi matemàtica
Choose an application
Algebra. --- Àlgebra --- Matemàtica --- Àlgebra universal --- Algorismes --- Anàlisi combinatòria --- Àlgebra commutativa --- Anàlisi diofàntica --- Anàlisi espinorial --- Anàlisi p-àdica --- Àlgebra multilineal --- Àlgebres associatives --- Àlgebres no commutatives --- Combinatòria (Matemàtica) --- Congruències i residus --- Determinants (Matemàtica) --- Equacions --- Estructures algebraiques ordenades --- Factors (Àlgebra) --- Formes (Matemàtica) --- Interpolació (Matemàtica) --- Logaritmes --- Permutacions --- Representacions d'àlgebres --- Sèries (Matemàtica) --- Successions (Matemàtica) --- Teorema del binomi --- Teoria de grups --- Teoria de nombres --- Teoria de la dualitat (Matemàtica) --- Anàlisi matemàtica --- Mathematics --- Mathematical analysis
Choose an application
Algebra. --- Algebra --- Mathematics --- Mathematical analysis --- Àlgebra --- Matemàtica --- Àlgebra universal --- Algorismes --- Anàlisi combinatòria --- Àlgebra commutativa --- Anàlisi diofàntica --- Anàlisi espinorial --- Anàlisi p-àdica --- Àlgebra multilineal --- Àlgebres associatives --- Àlgebres no commutatives --- Combinatòria (Matemàtica) --- Congruències i residus --- Determinants (Matemàtica) --- Equacions --- Estructures algebraiques ordenades --- Factors (Àlgebra) --- Formes (Matemàtica) --- Interpolació (Matemàtica) --- Logaritmes --- Permutacions --- Representacions d'àlgebres --- Sèries (Matemàtica) --- Successions (Matemàtica) --- Teorema del binomi --- Teoria de grups --- Teoria de nombres --- Teoria de la dualitat (Matemàtica) --- Anàlisi matemàtica
Choose an application
Algebra. --- Mathematics --- Mathematical analysis --- Àlgebra --- Matemàtica --- Àlgebra universal --- Algorismes --- Anàlisi combinatòria --- Àlgebra commutativa --- Anàlisi diofàntica --- Anàlisi espinorial --- Anàlisi p-àdica --- Àlgebra multilineal --- Àlgebres associatives --- Àlgebres no commutatives --- Combinatòria (Matemàtica) --- Congruències i residus --- Determinants (Matemàtica) --- Equacions --- Estructures algebraiques ordenades --- Factors (Àlgebra) --- Formes (Matemàtica) --- Interpolació (Matemàtica) --- Logaritmes --- Permutacions --- Representacions d'àlgebres --- Sèries (Matemàtica) --- Successions (Matemàtica) --- Teorema del binomi --- Teoria de grups --- Teoria de nombres --- Teoria de la dualitat (Matemàtica) --- Anàlisi matemàtica
Choose an application
This book is an English translation of an entirely revised version of the 1958 edition of the eighth chapter of the book Algebra, the second Book of the Elements of Mathematics. It is devoted to the study of certain classes of rings and of modules, in particular to the notions of Noetherian or Artinian modules and rings, as well as that of radical. This chapter studies Morita equivalence of module and algebras, it describes the structure of semisimple rings. Various Grothendieck groups are defined that play a universal role for module invariants. The chapter also presents two particular cases of algebras over a field. The theory of central simple algebras is discussed in detail; their classification involves the Brauer group, of which several descriptions are given. Finally, the chapter considers group algebras and applies the general theory to representations of finite groups. At the end of the volume, a historical note taken from the previous edition recounts the evolution of many of the developed notions.
Algebra. --- Àlgebra --- Matemàtica --- Àlgebra universal --- Algorismes --- Anàlisi combinatòria --- Àlgebra commutativa --- Anàlisi diofàntica --- Anàlisi espinorial --- Anàlisi p-àdica --- Àlgebra multilineal --- Àlgebres associatives --- Àlgebres no commutatives --- Combinatòria (Matemàtica) --- Congruències i residus --- Determinants (Matemàtica) --- Equacions --- Estructures algebraiques ordenades --- Factors (Àlgebra) --- Formes (Matemàtica) --- Interpolació (Matemàtica) --- Logaritmes --- Permutacions --- Representacions d'àlgebres --- Sèries (Matemàtica) --- Successions (Matemàtica) --- Teorema del binomi --- Teoria de grups --- Teoria de nombres --- Teoria de la dualitat (Matemàtica) --- Anàlisi matemàtica --- Mathematics --- Mathematical analysis
Listing 1 - 10 of 14 | << page >> |
Sort by
|