Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2022 (1)

2019 (1)

Listing 1 - 2 of 2
Sort by

Book
Marine Geomorphometry
Authors: --- ---
ISBN: 3038979554 3038979546 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Geomorphometry is the science of quantitative terrain characterization and analysis, and has traditionally focused on the investigation of terrestrial and planetary landscapes. However, applications of marine geomorphometry have now moved beyond the simple adoption of techniques developed for terrestrial studies, driven by the rise in the acquisition of high-resolution seafloor data and by the availability of user-friendly spatial analytical tools. Considering that the seafloor represents 71% of the surface of our planet, this is an important step towards understanding the Earth in its entirety.This volume is the first one dedicated to marine applications of geomorphometry. It showcases studies addressing the five steps of geomorphometry: sampling a surface (e.g., the seafloor), generating a Digital Terrain Model (DTM) from samples, preprocessing the DTM for subsequent analyses (e.g., correcting for errors and artifacts), deriving terrain attributes and/or extracting terrain features from the DTM, and using and explaining those terrain attributes and features in a given context. Throughout these studies, authors address a range of challenges and issues associated with applying geomorphometric techniques to the complex marine environment, including issues related to spatial scale, data quality, and linking seafloor topography with physical, geological, biological, and ecological processes. As marine geomorphometry becomes increasingly recognized as a sub-discipline of geomorphometry, this volume brings together a collection of research articles that reflect the types of studies that are helping to chart the course for the future of marine geomorphometry.

Keywords

geomorphology --- simulation --- accuracy --- spatial scale --- marine geomorphology --- surface roughness --- forage fish --- satellite imagery --- thalwegs --- digital elevation models (DEMs) --- Seabed 2030 --- Pacific sand lance --- Acoustic applications --- python --- Nippon Foundation/GEBCO --- Oceanic Shoals Australian Marine Park --- submarine topography --- multi beam echosounder --- sedimentation --- bedforms --- carbonate banks --- polychaete --- cold-water coral --- multiscale --- automated-mapping --- semi-automated mapping --- sediment habitats --- Atlantic Ocean --- Northwestern Australia --- random forest --- benthic habitat mapping --- paleoclimate --- submerged glacial bedforms --- seafloor --- currents --- Cenomanian–Turonian --- Multibeam bathymetry --- geomorphometry --- ArcGIS --- filter --- seabed mapping --- coral reefs --- eastern Brazilian shelf --- digital terrain analysis --- multibeam spatial resolution --- multibeam --- multibeam sonar --- Timor Sea --- seafloor geomorphometry --- shelf-slope-rise --- terrain analysis --- seafloor mapping technologies --- spatial analysis --- Canary Basin --- paleobathymetry --- Bonaparte Basin --- pockmarks --- benthic habitats --- Malin Basin --- geographic object-based image analysis --- seafloor mapping standards and protocols --- GIS --- Bering Sea --- object segmentation --- Barents Sea --- bathymetry --- carbonate mound --- underwater acoustics --- integration artefacts --- multibeam echosounder --- domes --- global bathymetry --- Random Forests --- North Sea --- spatial prediction --- Glaciated Margin --- marine geology --- image segmentation --- shelf morphology --- Alaska --- paleoceanography --- confidence --- swath geometry --- volcanoes --- deglaciation --- Cretaceous --- DEM --- habitat mapping --- marine remote sensing --- reconstruction --- acoustic-seismic profiling --- canyons


Book
Volcanic Processes Monitoring and Hazard Assessment Using Integration of Remote Sensing and Ground-Based Techniques
Authors: --- --- --- ---
ISBN: 3036551204 3036551190 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The monitoring of active volcanoes is a complex task based on multidisciplinary and integrated analyses that use ground, drones and satellite monitoring devices. Over time, and with the development of new technologies and increasing frequency of acquisition, the use of remote sensing to accomplish this important task has grown enormously. This is especially so with the use of drones and satellites for classifying eruptive events and detecting the opening of new vents, the spreading of lava flows on the surface or ash plumes in the atmosphere, the fallout of tephra on the ground, the intrusion of new magma within the volcano edifice, and the deformation preceding impending eruptions, and many other factors. The main challenge in using remote sensing techniques is to develop automated and reliable systems that may assist the decision maker in volcano monitoring, hazard assessment and risk reduction. The integration with ground-based techniques represents a valuable additional aspect that makes the proposed methods more robust and reinforces the results obtained. This collection of papers is focused on several active volcanoes, such as Stromboli, Etna, and Volcano in Italy; the Long Valley caldera and Kilauea volcano in the USA; and Cotopaxi in Ecuador.

Keywords

Technology: general issues --- History of engineering & technology --- Stromboli volcano --- effusive activity --- satellite thermal imagery --- ground-based thermal imagery --- cinder cone instability --- pyroclastic density currents --- Etna volcano --- lava fountain --- paroxysmal explosive eruptions --- ash plume height --- Landsat 8 satellite images --- mass discharge rate time-series --- paroxysmal explosions --- major explosive events --- ground and remote sensing monitoring --- classification of mild Strombolian events --- lava delta --- slope failure --- repeated bathymetric surveys --- digital elevation models --- LiDAR --- PLÉIADES --- morphological monitoring --- tephra --- remote sensing --- plume height --- mass eruption rate --- total erupted mass --- total grain-size distribution --- paroxysmal explosive and effusive episodes --- ash plume --- volcano monitoring --- volcanic hazard --- numerical modeling --- Long Valley Caldera --- deformation and gravity joint inversion --- topography correction --- heterogenous crust --- FEM --- source parameters --- intrusion density --- Cotopaxi volcano --- 1877 eruption --- primary lahars --- drone-imagery --- geological mapping --- lahar hazard assessment --- integrated DInSAR and GNSS time series --- geodetic dataset --- volcanic deformation --- early warning applications --- natural hazards --- SO2 flux --- CO2 flux --- heat flux --- Vulcano Island --- geochemical crisis --- extensive parameters --- eruption precursors --- neural networks --- self-organizing map --- seismo-acoustic signals --- ground-based visible and thermal imagery --- ground deformation --- volcano deformation --- automated detection --- lava fountains --- n/a --- PLÉIADES

Listing 1 - 2 of 2
Sort by