Narrow your search

Library

UGent (10)

KU Leuven (8)

ULiège (6)

UAntwerpen (5)

ULB (5)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2019 (2)

2010 (1)

1988 (1)

1986 (1)

1981 (1)

More...
Listing 1 - 10 of 10
Sort by
A Theory of Cross-Spaces. (AM-26)
Author:
ISBN: 0691083967 140088196X Year: 1950 Publisher: Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, A Theory of Cross-Spaces. (AM-26), Volume 26, will be forthcoming.


Book
Symmetry with Operator Theory and Equations
Author:
ISBN: 3039216678 303921666X 9783039216673 Year: 2019 Publisher: Basel, Switzerland : MDPI,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A plethora of problems from diverse disciplines such as Mathematics, Mathematical: Biology, Chemistry, Economics, Physics, Scientific Computing and also Engineering can be formulated as an equation defined in abstract spaces using Mathematical Modelling. The solutions of these equations can be found in closed form only in special case. That is why researchers and practitioners utilize iterative procedures from which a sequence is being generated approximating the solution under some conditions on the initial data. This type of research is considered most interesting and challenging. This is our motivation for the introduction of this special issue on Iterative Procedures.

Random Fourier series with applications to harmonic analysis.
Authors: ---
ISBN: 0691082898 0691082928 1400881536 Year: 1981 Volume: no. 101 Publisher: Princeton (N.J.) : Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book the authors give the first necessary and sufficient conditions for the uniform convergence a.s. of random Fourier series on locally compact Abelian groups and on compact non-Abelian groups. They also obtain many related results. For example, whenever a random Fourier series converges uniformly a.s. it also satisfies the central limit theorem. The methods developed are used to study some questions in harmonic analysis that are not intrinsically random. For example, a new characterization of Sidon sets is derived.The major results depend heavily on the Dudley-Fernique necessary and sufficient condition for the continuity of stationary Gaussian processes and on recent work on sums of independent Banach space valued random variables. It is noteworthy that the proofs for the Abelian case immediately extend to the non-Abelian case once the proper definition of random Fourier series is made. In doing this the authors obtain new results on sums of independent random matrices with elements in a Banach space. The final chapter of the book suggests several directions for further research.

Keywords

Harmonic analysis. Fourier analysis --- Fourier series. --- Harmonic analysis. --- Fourier, Séries de --- Analyse harmonique --- 517.518.4 --- Fourier series --- Harmonic analysis --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Harmonic functions --- Time-series analysis --- Fourier integrals --- Series, Fourier --- Series, Trigonometric --- Trigonometric series --- Fourier analysis --- 517.518.4 Trigonometric series --- Fourier, Séries de --- Abelian group. --- Almost periodic function. --- Almost surely. --- Banach space. --- Big O notation. --- Cardinality. --- Central limit theorem. --- Circle group. --- Coefficient. --- Commutative property. --- Compact group. --- Compact space. --- Complex number. --- Continuous function. --- Corollary. --- Discrete group. --- Equivalence class. --- Existential quantification. --- Finite group. --- Gaussian process. --- Haar measure. --- Independence (probability theory). --- Inequality (mathematics). --- Integer. --- Irreducible representation. --- Non-abelian group. --- Non-abelian. --- Normal distribution. --- Orthogonal group. --- Orthogonal matrix. --- Probability distribution. --- Probability measure. --- Probability space. --- Probability. --- Random function. --- Random matrix. --- Random variable. --- Rate of convergence. --- Real number. --- Ring (mathematics). --- Scientific notation. --- Set (mathematics). --- Slepian's lemma. --- Small number. --- Smoothness. --- Stationary process. --- Subgroup. --- Subset. --- Summation. --- Theorem. --- Uniform convergence. --- Unitary matrix. --- Variance.


Book
Iterative Methods for Solving Nonlinear Equations and Systems
Authors: --- ---
ISBN: 3039219413 3039219405 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

Keywords

Lipschitz condition --- heston model --- rectangular matrices --- computational efficiency --- Hull–White --- order of convergence --- signal and image processing --- dynamics --- divided difference operator --- engineering applications --- smooth and nonsmooth operators --- Newton-HSS method --- higher order method --- Moore–Penrose --- asymptotic error constant --- multiple roots --- higher order --- efficiency index --- multiple-root finder --- computational efficiency index --- Potra–Pták method --- nonlinear equations --- system of nonlinear equations --- purely imaginary extraneous fixed point --- attractor basin --- point projection --- fixed point theorem --- convex constraints --- weight function --- radius of convergence --- Frédholm integral equation --- semi-local convergence --- nonlinear HSS-like method --- convexity --- accretive operators --- Newton-type methods --- multipoint iterations --- banach space --- Kantorovich hypothesis --- variational inequality problem --- Newton method --- semilocal convergence --- least square problem --- Fréchet derivative --- Newton’s method --- iterative process --- Newton-like method --- Banach space --- sixteenth-order optimal convergence --- nonlinear systems --- Chebyshev–Halley-type --- Jarratt method --- iteration scheme --- Newton’s iterative method --- basins of attraction --- drazin inverse --- option pricing --- higher order of convergence --- non-linear equation --- numerical experiment --- signal processing --- optimal methods --- rate of convergence --- n-dimensional Euclidean space --- non-differentiable operator --- projection method --- Newton’s second order method --- intersection --- planar algebraic curve --- Hilbert space --- conjugate gradient method --- sixteenth order convergence method --- Padé approximation --- optimal iterative methods --- error bound --- high order --- Fredholm integral equation --- global convergence --- iterative method --- integral equation --- ?-continuity condition --- systems of nonlinear equations --- generalized inverse --- local convergence --- iterative methods --- multi-valued quasi-nonexpasive mappings --- R-order --- finite difference (FD) --- nonlinear operator equation --- basin of attraction --- PDE --- King’s family --- Steffensen’s method --- nonlinear monotone equations --- Picard-HSS method --- nonlinear models --- the improved curvature circle algorithm --- split variational inclusion problem --- computational order of convergence --- with memory --- multipoint iterative methods --- Kung–Traub conjecture --- multiple zeros --- fourth order iterative methods --- parametric curve --- optimal order --- nonlinear equation


Book
Introduction to Ramsey spaces
Author:
ISBN: 0691145423 0691145415 9780691145419 9780691145426 1282645064 9786612645068 1400835402 9781400835409 9781282645066 Year: 2010 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ramsey theory is a fast-growing area of combinatorics with deep connections to other fields of mathematics such as topological dynamics, ergodic theory, mathematical logic, and algebra. The area of Ramsey theory dealing with Ramsey-type phenomena in higher dimensions is particularly useful. Introduction to Ramsey Spaces presents in a systematic way a method for building higher-dimensional Ramsey spaces from basic one-dimensional principles. It is the first book-length treatment of this area of Ramsey theory, and emphasizes applications for related and surrounding fields of mathematics, such as set theory, combinatorics, real and functional analysis, and topology. In order to facilitate accessibility, the book gives the method in its axiomatic form with examples that cover many important parts of Ramsey theory both finite and infinite. An exciting new direction for combinatorics, this book will interest graduate students and researchers working in mathematical subdisciplines requiring the mastery and practice of high-dimensional Ramsey theory.

Keywords

Algebraic spaces. --- Ramsey theory. --- Ramsey theory --- Algebraic spaces --- Mathematics --- Algebra --- Physical Sciences & Mathematics --- Spaces, Algebraic --- Geometry, Algebraic --- Combinatorial analysis --- Graph theory --- Analytic set. --- Axiom of choice. --- Baire category theorem. --- Baire space. --- Banach space. --- Bijection. --- Binary relation. --- Boolean prime ideal theorem. --- Borel equivalence relation. --- Borel measure. --- Borel set. --- C0. --- Cantor cube. --- Cantor set. --- Cantor space. --- Cardinality. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Combinatorics. --- Compact space. --- Compactification (mathematics). --- Complete metric space. --- Completely metrizable space. --- Constructible universe. --- Continuous function (set theory). --- Continuous function. --- Corollary. --- Countable set. --- Counterexample. --- Decision problem. --- Dense set. --- Diagonalization. --- Dimension (vector space). --- Dimension. --- Discrete space. --- Disjoint sets. --- Dual space. --- Embedding. --- Equation. --- Equivalence relation. --- Existential quantification. --- Family of sets. --- Forcing (mathematics). --- Forcing (recursion theory). --- Gap theorem. --- Geometry. --- Ideal (ring theory). --- Infinite product. --- Lebesgue measure. --- Limit point. --- Lipschitz continuity. --- Mathematical induction. --- Mathematical problem. --- Mathematics. --- Metric space. --- Metrization theorem. --- Monotonic function. --- Natural number. --- Natural topology. --- Neighbourhood (mathematics). --- Null set. --- Open set. --- Order type. --- Partial function. --- Partially ordered set. --- Peano axioms. --- Point at infinity. --- Pointwise. --- Polish space. --- Probability measure. --- Product measure. --- Product topology. --- Property of Baire. --- Ramsey's theorem. --- Right inverse. --- Scalar multiplication. --- Schauder basis. --- Semigroup. --- Sequence. --- Sequential space. --- Set (mathematics). --- Set theory. --- Sperner family. --- Subsequence. --- Subset. --- Subspace topology. --- Support function. --- Symmetric difference. --- Theorem. --- Topological dynamics. --- Topological group. --- Topological space. --- Topology. --- Tree (data structure). --- Unit interval. --- Unit sphere. --- Variable (mathematics). --- Well-order. --- Zorn's lemma.


Book
Lectures on pseudo-differential operators: regularity theorems and applications to non-elliptic problems
Authors: ---
ISBN: 0691082472 0691601097 1400870488 0691630852 Year: 1979 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory of pseudo-differential operators (which originated as singular integral operators) was largely influenced by its application to function theory in one complex variable and regularity properties of solutions of elliptic partial differential equations. Given here is an exposition of some new classes of pseudo-differential operators relevant to several complex variables and certain non-elliptic problems.Originally published in 1979.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

517.982.4 --- Pseudodifferential operators --- Operators, Pseudodifferential --- Pseudo-differential operators --- Theory of generalized functions (distributions) --- Pseudodifferential operators. --- 517.982.4 Theory of generalized functions (distributions) --- Operator theory --- Differential equations, Partial --- Équations aux dérivées partielles --- Opérateurs pseudo-différentiels --- Addition. --- Adjoint. --- Approximation. --- Asymptotic expansion. --- Banach space. --- Bounded operator. --- Boundedness. --- Calculation. --- Change of variables. --- Coefficient. --- Compact space. --- Complex analysis. --- Computation. --- Corollary. --- Cotangent bundle. --- Derivative. --- Differential operator. --- Disjoint union. --- Elliptic partial differential equation. --- Estimation. --- Euclidean distance. --- Euclidean vector. --- Existential quantification. --- Fourier integral operator. --- Fourier transform. --- Geometric series. --- Heat equation. --- Heisenberg group. --- Homogeneous distribution. --- Infimum and supremum. --- Integer. --- Integration by parts. --- Intermediate value theorem. --- Jacobian matrix and determinant. --- Left inverse. --- Linear combination. --- Linear map. --- Mean value theorem. --- Monograph. --- Monomial. --- Nilpotent group. --- Operator (physics). --- Operator norm. --- Order of magnitude. --- Orthogonal complement. --- Parametrix. --- Parity (mathematics). --- Partition of unity. --- Polynomial. --- Projection (linear algebra). --- Pseudo-differential operator. --- Quadratic function. --- Regularity theorem. --- Remainder. --- Requirement. --- Right inverse. --- Scientific notation. --- Self-reference. --- Several complex variables. --- Singular integral. --- Smoothness. --- Sobolev space. --- Special case. --- Submanifold. --- Subset. --- Sum of squares. --- Summation. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Transpose. --- Triangle inequality. --- Uniform boundedness. --- Upper and lower bounds. --- Variable (mathematics). --- Without loss of generality. --- Zero set. --- Équations aux dérivées partielles --- Opérateurs pseudo-différentiels


Book
Plateau's problem and the calculus of variations.
Author:
ISBN: 0691085102 0691607753 1400860210 Year: 1988 Publisher: Princeton (N.J.) : Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is meant to give an account of recent developments in the theory of Plateau's problem for parametric minimal surfaces and surfaces of prescribed constant mean curvature ("H-surfaces") and its analytical framework. A comprehensive overview of the classical existence and regularity theory for disc-type minimal and H-surfaces is given and recent advances toward general structure theorems concerning the existence of multiple solutions are explored in full detail.The book focuses on the author's derivation of the Morse-inequalities and in particular the mountain-pass-lemma of Morse-Tompkins and Shiffman for minimal surfaces and the proof of the existence of large (unstable) H-surfaces (Rellich's conjecture) due to Brezis-Coron, Steffen, and the author. Many related results are covered as well. More than the geometric aspects of Plateau's problem (which have been exhaustively covered elsewhere), the author stresses the analytic side. The emphasis lies on the variational method.Originally published in 1989.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Calculus of variations. --- Global analysis (Mathematics). --- Minimal surfaces. --- Plateau's problem. --- Global analysis (Mathematics) --- MATHEMATICS / Geometry / Differential. --- Analysis, Global (Mathematics) --- Differential topology --- Functions of complex variables --- Geometry, Algebraic --- Isoperimetrical problems --- Variations, Calculus of --- Maxima and minima --- Minimal surface problem --- Plateau problem --- Problem of Plateau --- Minimal surfaces --- Surfaces, Minimal --- Banach space. --- Bernhard Riemann. --- Big O notation. --- Boundary value problem. --- Branch point. --- C0. --- Closed geodesic. --- Compact space. --- Complex analysis. --- Complex number. --- Conformal map. --- Conjecture. --- Contradiction. --- Convex curve. --- Convex set. --- Differentiable function. --- Direct method in the calculus of variations. --- Dirichlet integral. --- Dirichlet problem. --- Embedding. --- Estimation. --- Euler–Lagrange equation. --- Existential quantification. --- Geometric measure theory. --- Global analysis. --- Jordan curve theorem. --- Linear differential equation. --- Mathematical analysis. --- Mathematical problem. --- Mathematician. --- Maximum principle. --- Mean curvature. --- Metric space. --- Minimal surface. --- Modulus of continuity. --- Morse theory. --- Nonparametric statistics. --- Normal (geometry). --- Parallel projection. --- Parameter space. --- Parametrization. --- Partial differential equation. --- Quadratic growth. --- Quantity. --- Riemann mapping theorem. --- Second derivative. --- Sign (mathematics). --- Special case. --- Surface area. --- Tangent space. --- Theorem. --- Total curvature. --- Uniform convergence. --- Variational method (quantum mechanics). --- Variational principle. --- W0. --- Weak solution.


Book
Problems in analysis : a symposium in honor of Salomon Bochner
Authors: ---
ISBN: 0691080763 132288496X 0691620687 0691647429 1400869315 Year: 1970 Publisher: Princeton (N.J.) : Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present volume reflects both the diversity of Bochner's pursuits in pure mathematics and the influence his example and thought have had upon contemporary researchers.Originally published in 1971.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Mathematical analysis --- -Advanced calculus --- Analysis (Mathematics) --- Algebra --- Addresses, essays, lectures --- Mathematical analysis. --- -517.1 Mathematical analysis --- -Addresses, essays, lectures --- 517.1 Mathematical analysis --- 517.1. --- Approximation theory. --- System analysis. --- 517.1 --- Network analysis --- Network science --- Network theory --- Systems analysis --- System theory --- Mathematical optimization --- Theory of approximation --- Functional analysis --- Functions --- Polynomials --- Chebyshev systems --- Absolute continuity. --- Analytic continuation. --- Analytic function. --- Asymptotic expansion. --- Automorphism. --- Banach algebra. --- Banach space. --- Bessel function. --- Big O notation. --- Bounded operator. --- Branch point. --- Cauchy's integral formula. --- Cauchy's integral theorem. --- Characterization (mathematics). --- Cohomology. --- Commutative property. --- Compact operator. --- Compact space. --- Complex analysis. --- Complex number. --- Complex plane. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Coset. --- Covariance operator. --- Differentiable function. --- Differentiable manifold. --- Differential form. --- Dimension (vector space). --- Discrete group. --- Dominated convergence theorem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence class. --- Even and odd functions. --- Existential quantification. --- First variation. --- Formal power series. --- Fréchet derivative. --- Fubini's theorem. --- Function space. --- Functional analysis. --- Fundamental group. --- Green's function. --- Haar measure. --- Hermite polynomials. --- Hermitian symmetric space. --- Holomorphic function. --- Hyperbolic partial differential equation. --- Infimum and supremum. --- Infinite product. --- Integral equation. --- Lebesgue measure. --- Lie algebra. --- Lie group. --- Linear map. --- Markov chain. --- Meromorphic function. --- Metric space. --- Monotonic function. --- Natural number. --- Norm (mathematics). --- Normal subgroup. --- Null set. --- Partition of unity. --- Pointwise. --- Polynomial. --- Power series. --- Pseudogroup. --- Riemann surface. --- Riemannian manifold. --- Schrödinger equation. --- Self-adjoint operator. --- Self-adjoint. --- Semigroup. --- Semisimple algebra. --- Sesquilinear form. --- Sign (mathematics). --- Singular perturbation. --- Special case. --- Spectral theory. --- Stokes' theorem. --- Subgroup. --- Submanifold. --- Subset. --- Support (mathematics). --- Symplectic geometry. --- Symplectic manifold. --- Theorem. --- Uniform convergence. --- Unitary operator. --- Unitary representation. --- Upper and lower bounds. --- Vector bundle. --- Vector field. --- Volterra's function. --- Weierstrass theorem. --- Zorn's lemma.

Singular integrals and differentiability properties of functions
Author:
ISBN: 0691080798 1400883881 9780691080796 Year: 1986 Volume: 30 Publisher: Princeton (N.J.): Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numbers and their functions. In this book, Princeton professor Elias Stein, a leading mathematical innovator as well as a gifted expositor, produced what has been called the most influential mathematics text in the last thirty-five years. One reason for its success as a text is its almost legendary presentation: Stein takes arcane material, previously understood only by specialists, and makes it accessible even to beginning graduate students. Readers have reflected that when you read this book, not only do you see that the greats of the past have done exciting work, but you also feel inspired that you can master the subject and contribute to it yourself. Singular integrals were known to only a few specialists when Stein's book was first published. Over time, however, the book has inspired a whole generation of researchers to apply its methods to a broad range of problems in many disciplines, including engineering, biology, and finance. Stein has received numerous awards for his research, including the Wolf Prize of Israel, the Steele Prize, and the National Medal of Science. He has published eight books with Princeton, including Real Analysis in 2005.

Keywords

Functions of real variables. --- Harmonic analysis. --- Singular integrals. --- Multiplicateurs (analyse mathématique) --- Multipliers (Mathematical analysis) --- Functional analysis --- Harmonic analysis. Fourier analysis --- Functions of real variables --- Harmonic analysis --- Singular integrals --- Fonctions de variables réelles --- Analyse harmonique --- Intégrales singulières --- Fonctions de plusieurs variables réelles --- Calcul différentiel --- Functions of several real variables --- Differential calculus --- 517.518.5 --- Integrals, Singular --- Integral operators --- Integral transforms --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Real variables --- Functions of complex variables --- 517.518.5 Theory of the Fourier integral --- Theory of the Fourier integral --- A priori estimate. --- Analytic function. --- Banach algebra. --- Banach space. --- Basis (linear algebra). --- Bessel function. --- Bessel potential. --- Big O notation. --- Borel measure. --- Boundary value problem. --- Bounded function. --- Bounded operator. --- Bounded set (topological vector space). --- Bounded variation. --- Boundedness. --- Cartesian product. --- Change of variables. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Commutative property. --- Complex analysis. --- Complex number. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Derivative. --- Difference "ient. --- Difference set. --- Differentiable function. --- Dimension (vector space). --- Dimensional analysis. --- Dirac measure. --- Dirichlet problem. --- Distribution function. --- Division by zero. --- Dot product. --- Dual space. --- Equation. --- Existential quantification. --- Family of sets. --- Fatou's theorem. --- Finite difference. --- Fourier analysis. --- Fourier series. --- Fourier transform. --- Function space. --- Green's theorem. --- Harmonic function. --- Hilbert space. --- Hilbert transform. --- Homogeneous function. --- Infimum and supremum. --- Integral transform. --- Interpolation theorem. --- Interval (mathematics). --- Linear map. --- Lipschitz continuity. --- Lipschitz domain. --- Locally integrable function. --- Marcinkiewicz interpolation theorem. --- Mathematical induction. --- Maximal function. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Multiple integral. --- Open set. --- Order of integration. --- Orthogonality. --- Orthonormal basis. --- Partial derivative. --- Partial differential equation. --- Partition of unity. --- Periodic function. --- Plancherel theorem. --- Pointwise. --- Poisson kernel. --- Polynomial. --- Real variable. --- Rectangle. --- Riesz potential. --- Riesz transform. --- Scientific notation. --- Sign (mathematics). --- Singular integral. --- Sobolev space. --- Special case. --- Splitting lemma. --- Subsequence. --- Subset. --- Summation. --- Support (mathematics). --- Theorem. --- Theory. --- Total order. --- Unit vector. --- Variable (mathematics). --- Zero of a function. --- Fonctions de plusieurs variables réelles --- Calcul différentiel --- Multiplicateurs (analyse mathématique)

Introduction to Fourier analysis on Euclidean spaces
Authors: ---
ISBN: 140088389X 069108078X 9781400883899 9780691080789 Year: 1971 Volume: 32 Publisher: Princeton (N.J.): Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

Keywords

Harmonic analysis. --- Harmonic functions. --- Functions, Harmonic --- Laplace's equations --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Harmonic analysis. Fourier analysis --- Harmonic analysis --- Fourier analysis --- Harmonic functions --- Analyse harmonique --- Analyse de Fourier --- Fonctions harmoniques --- Fourier Analysis --- Fourier, Transformations de --- Euclide, Espaces d' --- Bessel functions --- Differential equations, Partial --- Fourier series --- Lamé's functions --- Spherical harmonics --- Toroidal harmonics --- Banach algebras --- Time-series analysis --- Analysis, Fourier --- Fourier analysis. --- Basic Sciences. Mathematics --- Analysis, Functions --- Analysis, Functions. --- Calculus --- Mathematical analysis --- Mathematics --- Fourier, Transformations de. --- Euclide, Espaces d'. --- Potentiel, Théorie du --- Fonctions harmoniques. --- Potential theory (Mathematics) --- Analytic continuation. --- Analytic function. --- Banach algebra. --- Banach space. --- Bessel function. --- Borel measure. --- Boundary value problem. --- Bounded operator. --- Bounded set (topological vector space). --- Cartesian coordinate system. --- Cauchy–Riemann equations. --- Change of variables. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Complex plane. --- Conformal map. --- Conjugate transpose. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Differentiation of integrals. --- Dimensional analysis. --- Dirichlet problem. --- Disk (mathematics). --- Distribution (mathematics). --- Equation. --- Euclidean space. --- Existential quantification. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fubini's theorem. --- Function (mathematics). --- Function space. --- Green's theorem. --- Hardy's inequality. --- Hardy–Littlewood maximal function. --- Harmonic function. --- Hermitian matrix. --- Hilbert transform. --- Holomorphic function. --- Homogeneous function. --- Inequality (mathematics). --- Infimum and supremum. --- Interpolation theorem. --- Interval (mathematics). --- Lebesgue integration. --- Lebesgue measure. --- Linear interpolation. --- Linear map. --- Linear space (geometry). --- Line–line intersection. --- Liouville's theorem (Hamiltonian). --- Lipschitz continuity. --- Locally integrable function. --- Lp space. --- Majorization. --- Marcinkiewicz interpolation theorem. --- Mean value theorem. --- Measure (mathematics). --- Mellin transform. --- Monotonic function. --- Multiplication operator. --- Norm (mathematics). --- Operator norm. --- Orthogonal group. --- Paley–Wiener theorem. --- Partial derivative. --- Partial differential equation. --- Plancherel theorem. --- Pointwise convergence. --- Poisson kernel. --- Poisson summation formula. --- Polynomial. --- Principal value. --- Quadratic form. --- Radial function. --- Radon–Nikodym theorem. --- Representation theorem. --- Riesz transform. --- Scientific notation. --- Series expansion. --- Singular integral. --- Special case. --- Subharmonic function. --- Support (mathematics). --- Theorem. --- Topology. --- Total variation. --- Trigonometric polynomial. --- Trigonometric series. --- Two-dimensional space. --- Union (set theory). --- Unit disk. --- Unit sphere. --- Upper half-plane. --- Variable (mathematics). --- Vector space. --- Fourier, Analyse de --- Potentiel, Théorie du. --- Potentiel, Théorie du --- Espaces de hardy

Listing 1 - 10 of 10
Sort by