Listing 1 - 3 of 3 |
Sort by
|
Choose an application
his issue of ""Library Technology Reports"" analyzes five different academic libraries to better understand their investments, detailing the outcome thus far and drawing conclusions about the next-generation catalog.
Cataloging --- Library catalogs --- Catalogs, Library --- Libraries --- Catalogs --- Cataloguing --- Information organization --- Technical services (Libraries) --- Books --- Technological innovations.
Choose an application
Ionospheres provides a comprehensive description of the physical, plasma and chemical processes controlling the behavior of ionospheres. The relevant transport equations and related coefficients are derived in detail and their applicability and limitations are described. Relevant wave processes are outlined and important ion chemical processes and reaction rates are presented. The various energy deposition and transfer mechanisms are described in some detail, and a chapter is devoted to the various processes controlling the upper atmosphere and exosphere. The second half of the book presents our current understanding of the structure, chemistry, dynamics and energetics of the terrestrial ionosphere, and other solar system bodies. The final chapter describes ionospheric measurement techniques. The book will form a comprehensive and lasting reference for scientists interested in ionospheres, and it will also prove an ideal textbook for graduate students. It contains extensive student problem sets, and an answer book is available for instructors.
Ionosphere. --- Planets --- Ionospheres.
Choose an application
This volume reviews what we know of the corresponding plasma source for each intrinsically magnetized planet. Plasma sources fall essentially in three categories: the solar wind, the ionosphere (both prevalent on Earth), and the satellite-related sources. Throughout the text, the case of each planet is described, including the characteristics, chemical composition and intensity of each source. The authors also describe how the plasma generated at the source regions is transported to populate the magnetosphere, and how it is later lost. To summarize, the dominant sources are found to be the solar wind and sputtered surface ions at Mercury, the solar wind and ionosphere at Earth (the relative importance of the two being discussed in a specific introductory chapter), Io at Jupiter and – a big surprise of the Cassini findings – Enceladus at Saturn. The situation for Uranus and Neptune, which were investigated by only one fly-by each, is still open and requires further studies and exploration. In the final chapter, the book offers a summary of the little we know of Uranus and Neptune, then summarizes in a comparative way what we know of plasma sources throughout the solar system, and proposes directions for future research. Originally published in Space Science Reviews, Vol. 192, Issues 1-4, 2015.
Astrophysics --- Astronomy & Astrophysics --- Physical Sciences & Mathematics --- Magnetosphere. --- Solar atmosphere --- Space plasmas. --- Magnetic properties. --- Cosmic plasmas --- Plasmas, Cosmic --- Plasmas, Space --- Atmosphere, Solar --- Cosmic physics --- Plasma (Ionized gases) --- Heliosphere (Astrophysics) --- Stars --- Atmosphere, Upper --- Atmospheres --- Upper atmosphere --- Astrophysics. --- Planetology. --- Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics). --- Plasma Physics. --- Planetary sciences --- Planetology --- Astronomical physics --- Astronomy --- Physics --- Space sciences. --- Plasma (Ionized gases). --- Gaseous discharge --- Gaseous plasma --- Magnetoplasma --- Ionized gases --- Science and space --- Space research --- Cosmology --- Science --- Planetary science.
Listing 1 - 3 of 3 |
Sort by
|