Narrow your search

Library

KU Leuven (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

VIVES (7)

FARO (6)

LUCA School of Arts (6)

Vlaams Parlement (6)

UGent (2)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2021 (3)

2020 (1)

2018 (1)

2017 (1)

2015 (1)

Listing 1 - 7 of 7
Sort by

Book
Perspectives for the Next Generation of Virus Research: Spearheading the Use of Innovative Technologies and Methodologies
Authors: --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Infectious diseases are associated with approximately 20% of global mortality, with viral diseases causing about one third of these deaths. Besides newly emerging and re-emerging viral infections will continue to pose a threat to human survival globally. In this case scientific advances have greatly been increased to defend against those pathogens. For example, rapid genomic sequencing, proteomics, epigenomics, nanotechnology, and other advanced tools are being applied to detect viruses at the point of care and to track their spread within human populations as well as to understand virus-host interaction and virus induced pathogenesis. From rapid identification of new viruses to prevention with vaccination and treatment with effective therapeutics, biomedical research has continuously provided tools to meet the constant threat of emerging viral pathogens. Despite these advances, each new disease brings unique challenges to scientists every year. So we must stay at the cutting edge of scientific discovery, working energetically to develop new tools to combat the ever-changing threats they pose. Our research topic highlights such advanced and new technology based virus research which definitely bolsters the researcher's ability to tackle emerging, re-emerging and stable viral pathogens. We are credulous that the papers including in the e-books will be beneficial to the experts in the field to understand the molecular, immunological, ecological and clinical aspects of the next generation researches for the prevention and control of infectious diseases caused by viruses.


Book
The unfolded protein response in virus infections
Authors: ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unfolded protein response (UPR) is a cellular adaptive response for restoring endoplasmic reticulum (ER) homeostasis in response to ER stress. Perturbation of the UPR and failure to restore ER homeostasis inevitably leads to diseases. It has now become evident that perturbation of the UPR is the cause of many important human diseases such as neurodegenerative diseases, cystic fibrosis, diabetes and cancer. It has recently emerged that virus infections can trigger the UPR but the relationship between virus infections and host UPR is intriguing. On one hand, UPR is harmful to the virus and virus has developed means to subvert the UPR. On the other hand, virus exploits the host UPR to assist in its own infection, gene expression, establishment of persistence, reactivation from latency and to evade the immune response. When this delicate balance of virus-host UPR interaction is broken down, it may cause diseases. This is particularly challenging for viruses that establish a chronic infection to maintain this balance. Each virus interacts with the host UPR in a different way to suit their life style and how the virus interacts with the host UPR can define the characteristic of a particular virus infection. Understanding how a particular virus interacts with the host UPR may pave the way to the design of a new class of anti-viral that targets this particular pathway to skew the response towards anti-virus. This knowledge can also be translated into the clinics to help re-design oncolytic virotherapy and gene therapy. In this research topic we aimed to compile a collection of focused review articles, original research articles, commentary, opinion, hypothesis and methods to highlight the current advances in this burgeoning area of research, in an attempt to provide an in-depth understanding of how viruses interact with the host UPR, which may be beneficial to the future combat of viral and human diseases.


Book
Influenza Virus and Vaccination
Authors: ---
ISBN: 3039288180 3039288172 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The influenza virus poses a threat to human health and is responsible for global epidemics every year. In addition to seasonal infections, influenza can cause occasional pandemics of great consequence when novel viruses are introduced into humans. Despite the implementation of comprehensive vaccination programs, influenza viruses continue to pose an important and unpredictable global public health threat. They are one of the most significant causes of morbidity and mortality each year and have a significant economic impact. In recent years, research has been conducted to find alternative approaches to influenza vaccine development, including the generation of universal vaccines. Notably, significant progress in the field of influenza infection, transmission, and immunity have contributed to our understanding of influenza biology, and to expanding the technological approaches for the generation of more efficient strategies against influenza infections. Moreover, highly remarkable developments have been made in the implementation of new methodologies to evaluate the efficiency of vaccines and improve them for use on domestic animals such as poultry, horses, dogs or pigs. This enables us to decrease the exposure of humans to potentially pandemic viruses. The articles in this Special Issue will address the importance of influenza to human health and the advances in influenza research that have led to the development of better therapeutics and vaccination strategies.


Book
Ubiquitination in Health and Diseases
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ubiquitination is a biological process mediated by ubiquitin itself, the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, E3 ubiquitin ligase, and deubiquitinating enzyme, respectively. Currently, these multiple biological steps are revealed to participate in various life phenomena, such as cell proliferation, regulation of cell surface proteins expression, and mitochondrial function, which are profoundly related to human health and diseases. Although clinical applications targeting ubiquitination are still limited compared to those directed toward kinase systems such as tyrosine kinases, multiple enzymatic consequences should be future therapeutic implications. This Special Issue of IJMS entitled “Ubiquitination in Health and Disease” successfully published15 distinguished manuscripts, with a total of 66 international authors and. This book provides the latest and most useful information for researchers and scientists in this field.

Keywords

deubiquitinase --- degradation --- therapeutic target --- cancer --- hematopoiesis --- hematopoietic stem cells --- immune response --- regulation of gene expression --- ubiquitin system --- genetic diseases --- ubiquitin ligase --- deubiquitinases --- monoubiquitin signaling --- vesicular trafficking --- protein complex formation --- inflammation --- inhibitor --- innate immune --- interferon --- LUBAC --- NF-κB --- ubiquitin --- Parkinson’s disease --- dopa-responsive dystonia --- tyrosine hydroxylase --- α-synuclein --- fatty acid-binding protein 3 --- ubiquitination --- proteasomal degradation --- ubiquitin-proteasome system --- mitochondria --- E3 ubiquitin ligase --- MITOL/MARCH5 --- salt-sensitive hypertension --- Nedd4L/Nedd4-2 --- epithelial sodium channel --- aldosterone sensitive distal nephron --- excitation-transcription coupling --- RNF183 --- RNF186 --- RNF182 --- RNF152 --- RING finger --- mTOR --- endoplasmic reticulum stress --- osmotic stress --- ubiquitin code --- virus infection --- virus-host interaction --- tau protein --- semisynthesis --- disulfide-coupling --- polyubiquitin --- fibrils --- aggregation --- neurodegeneration --- deubiquitination --- inhibitors --- protein quality control --- proteolysis --- protein stabilization --- regulatory T cells --- mesenchymal stem cell --- cortical bone derived stem cell --- myocardial infarction --- blood pressure --- renal salt reabsorption --- vascular function --- ubiquitin proteasome system --- ubiquitin–proteasome pathway --- cilia --- ciliogenesis --- differentiation --- proliferation --- ciliopathy --- E3s --- DUBs --- UPS --- neurodegenerative disease --- immune-related diseases


Book
Roles of Host Gene and Non-coding RNA Expression in Virus Infection
Authors: ---
ISBN: 3030053695 3030053687 Year: 2018 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume discusses the interactions between viruses and their host cells, and explores the roles of host and viral genes and non-coding RNAs in the virus replication cycle. During infection, viruses express a variety of genes, encoding proteins and RNAs that serve to subjugate the cell – by redirecting cellular processes to support viral replication and, at the same time, by mitigating the cellular response to infection. In this book, experts discuss these interactions in depth, and elaborate on our current understanding of virus-cell interactions for a diverse range of viruses, including positive and negative sense RNA viruses, DNA viruses, and a vector-borne virus. The roles of non-coding RNAs are also discussed. While each class of viruses has distinct replication requirements, this volume reveals unique features and commonalities in viral replication cycles. Accordingly, it represents a valuable source of information for researchers and clinicians alike.

Keywords

Viral genetics --- Virus genetics --- Viruses --- Microbial genetics --- Mathematical models. --- Genetics --- Medical virology. --- Emerging infectious diseases. --- Virology. --- Infectious Diseases. --- Emerging infections --- New infectious diseases --- Re-emerging infectious diseases --- Reemerging infectious diseases --- Communicable diseases --- Medical microbiology --- Virology --- Virus diseases --- RNA, Untranslated --- Virus Replication --- Host Microbial Interactions --- Virus Diseases --- genetics --- Bacteria Host Interactions --- Bacterial-Host Interactions --- Bacterium-Host Interactions --- Host Bacteria Interactions --- Host Microbe Interactions --- Host Microbiota Interactions --- Host Virus Interactions --- Host-Fungal Interactions --- Host-Microbial Interface --- Microbe Host Interactions --- Microbial Host Interactions --- Microbiota Host Interactions --- Viral-Host Interactions --- Virus Host Interactions --- Bacteria Host Interaction --- Bacterial Host Interactions --- Bacterial-Host Interaction --- Bacterium Host Interactions --- Bacterium-Host Interaction --- Host Bacteria Interaction --- Host Fungal Interactions --- Host Microbe Interaction --- Host Microbial Interaction --- Host Microbial Interface --- Host Microbiota Interaction --- Host Virus Interaction --- Host-Fungal Interaction --- Host-Microbial Interfaces --- Microbe Host Interaction --- Microbial Host Interaction --- Microbiota Host Interaction --- Viral Host Interactions --- Viral-Host Interaction --- Virus Host Interaction --- Noncoding RNA --- RNA, Non-Coding --- RNA, Non-Peptide-Coding --- RNA, Non-Protein-Coding --- RNA, Noncoding --- RNA, Nontranslated --- npcRNA --- Non-Coding RNA --- Non-Peptide-Coding RNA --- Non-Protein-Coding RNA --- Nontranslated RNA --- RNA, Non Coding --- RNA, Non Peptide Coding --- RNA, Non Protein Coding --- Untranslated RNA --- Infectious diseases. --- Microbiology


Book
Spumaretroviruses
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Foamy viruses, currently referred to as spumaretroviruses, are the most ancient retroviruses as evidenced by traces of viral sequences dispersed in all vertebrate classes from fish to mammals. Additionally, infectious foamy viruses circulate in a variety of mammalian species including simian, bovine, equine, caprine, and feline. Foamy viruses have many unique features which led to the division of the retrovirus family into two subfamilies, the Orthoretrovirinae and Spumaretrovirinae. In vitro, foamy viruses have a broad host range and in vivo, human infections have been described due to cross-species transmission from infected nonhuman primates. Thus far, there are no reports of virus-induced disease in humans or in the natural host species. These unique properties of foamy viruses have led researchers to develop foamy viruses as gene therapy vectors to study virus–virus and virus–host interactions for identifying factors involved in virus replication, transmission, and immune regulation that could influence potential clinical outcomes in humans as well as for using endogenous foamy virus sequences in the analysis of host species evolution.

Keywords

spumavirus --- feline illness --- proviral load --- neglected virus --- bovine foamy virus --- infectious clone --- particle release --- cell-free transmission --- foamy virus --- spumaretrovirus --- cross-species virus transmission --- zoonosis --- restriction factors --- immune responses --- FV vectors --- virus replication --- latent infection --- feline foamy virus --- epidemiology --- retrovirus --- Spumaretrovirus --- mountain lion --- Puma concolor --- ELISA --- protease --- reverse transcriptase --- RNase H --- reverse transcription --- antiviral drugs --- resistance --- simian foamy virus --- gibbon --- lesser apes --- co-evolution --- complete viral genome --- equine foamy virus --- isolation --- Japan --- sero-epidemiology --- reptile foamy virus --- endogenous foamy virus --- endogenous retrovirus --- ancient retroviruses --- co-speciation --- foamy virus-host interactions --- viral tropism --- infection --- kidney --- cats --- chronic kidney disease --- chronic renal disease --- integrase --- integration --- co-infections --- NHP --- pathogenesis --- zoonoses --- viral prevalence --- Neotropical primates --- free-living primates --- Brazil --- new world primates --- simian retrovirus --- BFV --- spuma virus --- model system --- animal model --- animal experiment --- miRNA function --- gene expression --- antiviral host restriction --- gene therapy --- in-vivo gene therapy --- hematopoietic stem and progenitor cells --- foamy virus vector --- pre-clinical canine model --- SCID-X1 --- innate sensing --- cGAS --- STING --- foamy viruses --- wild ruminants --- European bison --- red deer --- roe deer --- fallow deer --- seroreactivity --- inter-species transmission --- HSC --- gene marking --- FV gene transfer to HSCs --- gene therapy alternatives --- serotype --- high-throughput sequencing --- replication kinetics --- cytopathic effect --- reverse transcriptase activity --- miRNA expression --- virus-host-interaction --- miRNA target gene identification --- innate immunity --- ANKRD17 --- Bif1 (SH3GLB1) --- replication in vitro


Book
Cell Biology of Viral Infections
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Viruses exhibit an elegant simplicity as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This Special Issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus–host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections but also include novel technological developments.

Keywords

ectoderm --- mesoderm --- human development --- embryogenesis --- interferon response --- interferon-induced genes --- self-organizing map (SOM) data portrayal --- epigenetic signature --- embryoid body --- TGF-β and Wnt/β-catenin pathway --- interferon --- tumor necrosis factor --- STAT --- interferon regulatory factor --- antiviral --- autoimmunity --- inflammation --- hepatitis C virus --- HCV --- erlin-1 --- erlin-2 --- host factor --- endoplasmic reticulum --- RNA replication --- protein production --- virus production --- lipid droplet --- TAP-GFP --- fluorescent TAP platform --- antigen presentation --- MHC I --- immune evasion --- BoHV-1 UL49.5 --- virus --- calcium channels --- calcium pumps --- virus–host interaction --- Ebola virus --- filovirus --- inclusion bodies --- NXF1 --- liquid organelles --- mRNA export --- cancer immunotherapy --- oncolytic virus --- herpes simplex virus --- immune checkpoint inhibitor --- angiogenesis inhibitor --- rabies --- uDISCO --- 3D imaging --- rabies pathogenicity --- astrocyte infection --- metabolism --- apoptosis --- autophagy --- HIV-1 spread --- cell-free infection --- cell–cell transmission --- 3D cultures --- mathematical modeling --- environmental restriction --- CAD --- pyrimidine synthesis --- HEV --- particle production --- viral replication --- virus entry --- hantavirus --- Tula virus --- replication --- factory --- RNA synthesis --- Golgi --- stress granules --- actin cytoskeleton --- nucleocapsid transport --- Arp2/3 complex --- ERAP2 --- ERAP2/Iso3 --- microbial infections --- alternative splicing --- SARS-CoV-2 --- host cell response --- coronavirus --- MERS-CoV --- SARS-CoV --- sialic acid --- Siglec --- antiviral peptide --- enveloped viruses --- membrane phosphatidylserine --- envelope disruption --- membrane damage --- antiviral autophagy --- galectin --- bacterial invasion --- adenovirus --- lysophagy --- ESCRT machinery --- cedar virus --- henipavirus --- fusion protein --- endocytosis --- biological activity --- feline coronavirus --- feline enteric coronavirus --- FECV --- feline infectious peritonitis virus --- FIPV --- feline intestinal organoids --- alphaviruses --- cell death --- mosquito --- tolerance

Listing 1 - 7 of 7
Sort by