Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Ultrasonic waves are nowadays used for multiple purposes including both low-intensity/high frequency and high-intensity/low-frequency ultrasound. Low-intensity ultrasound transmits energy through the medium in order to obtain information about the medium or to convey information through the medium. It is successfully used in non-destructive inspection, ultrasonic dynamic analysis, ultrasonic rheology, ultrasonic spectroscopy of materials, process monitoring, applications in civil engineering, aerospace and geological materials and structures, and in the characterization of biological media. Nowadays, it is an essential tool for assessing metals, plastics, aerospace composites, wood, concrete, and cement. High-intensity ultrasound deliberately affects the propagation medium through the high local temperatures and pressures generated. It is used in industrial processes such as welding, cleaning, emulsification, atomization, etc.; chemical reactions and reactor induced by ultrasonic waves; synthesis of organic and inorganic materials; microstructural effects; heat generation; accelerated material characterization by ultrasonic fatigue testing; food processing; and environmental protection. This book collects eleven papers, one review, and ten research papers with the aim to present recent advances in ultrasonic wave propagation applied for the characterization or the processing of materials. Both fundamental science and applications of ultrasound in the field of material characterization and material processing have been gathered.
ultrasonic lens --- axicon lens --- focused ultrasound --- transcranial ultrasound --- non-destructive inspection --- damage identification --- topology optimization --- ultrasonic wave propagation --- ultrasonic visualization --- L-shaped ultrasonic wave guide rod --- ultrasonic bending vibration --- 2A14 aluminum alloy --- solidification structure --- composition segregation --- 1060 aluminum alloy --- twin-roll casting --- microstructure --- mechanical properties --- concrete --- mesostructure --- Lamb wave --- heterogeneity --- Monte Carlo method --- SHM --- ultrasound --- time of flight --- reinforcement --- resin transfer molding (RTM) --- permeability --- liquid composite molding --- material characterization --- composite manufacturing --- liquid penetration --- ultrasound transmission --- capillary penetration --- porous sheets --- bulk metallic glass --- ultrasonic assisted turning --- finite element analysis --- cutting force --- guided waves --- setting time --- mortar and concrete --- early age --- thermoplastic composites --- ultrasonic joints --- resistance heating --- elastography --- viscoelastic properties --- creep --- stress relaxation --- n/a
Choose an application
In recent years, the scientific community’s interest towards efficient energy conversion systems has significantly increased. One of the reasons is certainly related to the change in the temperature of the planet, which appears to have increased by 0.76 °C with respect to pre-industrial levels, according to the Intergovernmental Panel on Climate Change (IPCC), and this trend has not yet been stopped. The European Union considers it vital to prevent global warming from exceeding 2 °C with respect to pre-industrial levels, since this phenomenon has been proven to result in irreversible and potentially catastrophic changes. These climate changes are mainly caused by the emissions of greenhouse gasses related to human activities, and can be drastically reduced by employing energy systems, for both heating and cooling of buildings and for power production, characterized by high efficiency levels and/or based on renewable energy sources. This Special Issue, published in the journal Energies, includes 12 contributions from across the world, including a wide range of applications, such as HT-PEMFC, district heating systems, a thermoelectric generator for industrial waste, artificial ground freezing, nanofluids, and others.
Thermosyphon --- start-up characteristics --- hydrophilic and hydrophobic --- contact angle --- numerical modeling --- heat transfer --- artificial ground freezing --- underground station --- metro in Napoli --- GEO heating --- microwave heating --- microfluidics --- silicon --- chip integration --- industrial waste heat recovery --- thermoelectric generator --- hexagonal heat exchanger --- temperature distribution --- output performance --- combustor --- turbulent Prandtl approaches --- Navier–Stokes simulation --- thermal analysis --- axial permanent magnet coupling (APMC) --- eddy current --- finite element method (FEM) --- lumped-parameter thermal network (LPTN) --- energy efficiency --- induction heating --- resistance heating --- turnouts --- railway --- safety of rail traffic --- stock-rail --- switch-rail --- nanofluid --- entropy generation --- viscous dissipation --- magnetic heating --- high temperature proton exchange membrane fuel cell --- thermal management --- organic rankine cycle --- plate heat exchanger --- waste heat recovery --- cooling system --- thermodynamic modeling --- shielded metal arc welding --- welding spatter --- electrode --- electrical power --- welding time --- drying --- energy analysis --- exergy analysis --- multiphase model --- multispecies model --- thermodynamics --- Baltic Sea Region --- district heating --- DH network --- smart asset management --- smart grid
Choose an application
The miniaturization of industrial products is a global trend. Metal forming technology is not only suitable for mass production and excellent in productivity and cost reduction, but it is also a key processing method that is essential for products that utilize advantage of the mechanical and functional properties of metals. However, it is not easy to realize the processing even if the conventional metal forming technology is directly scaled down. This is because the characteristics of materials, processing methods, die and tools, etc., vary greatly with miniaturization. In metal micro forming technology, the size effect of major issues for micro forming have also been clarified academically. New processing methods for metal micro forming have also been developed by introducing new special processing techniques, and it is a new wave of innovation toward high precision, high degree of processing, and high flexibility. To date, several special issues and books have been published on micro-forming technology. This book contains 11 of the latest research results on metal micro forming technology. The editor believes that it will be very useful for understanding the state-of-the-art of metal micro forming technology and for understanding future trends.
laser impact liquid flexible embossing --- microforming --- 3-D large area micro arrays --- liquid shock wave --- high strain rate forming --- numerical simulation --- carbon nanotubes --- feedstock --- homogeneity --- metallic powders --- micro hot embossing --- shaping --- plasma printing --- micro-texturing --- screen printing --- low-temperature plasma nitriding --- selective anisotropic nitrogen embedding --- selective hardening --- sand blasting --- AISI316 --- micro-meshing punch array --- copper plates --- resistance heating system --- surface modification --- free surface roughness evolution --- compression --- thin sheet metal --- micro metal forming --- ultrasonic --- orbital forming --- micro-tubes --- micro-tube drawing --- micro-hydroforming --- laser assisted --- severe plastic deformation --- micro-tube testing --- dieless drawing --- SUS304 stainless steel wires --- oxide layer --- finite element simulation --- surface texturing --- sheet metal forming --- in-situ observation --- micro-dimple --- lubricant --- microtube --- hydroforming --- T-shape bulging --- tube materials --- friction --- tube length --- micro hydroformability --- process window --- FE analysis --- microstructure --- size effects --- deformation characterization --- micro-rolling --- wire --- n/a
Listing 1 - 3 of 3 |
Sort by
|