Narrow your search
Listing 1 - 2 of 2
Sort by

Book
Symmetry Breaking in Cells and Tissues
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

“Symmetry Breaking in Cells and Tissues” presents a collection of seventeen reviews, opinions and original research papers contributed by theoreticians, physicists and mathematicians, as well as experimental biologists, united by a common interest in biological pattern formation and morphogenesis. The contributors discuss diverse manifestations of symmetry breaking in biology and showcase recent developments in experimental and theoretical approaches to biological morphogenesis and pattern formation on multiple scales.

Keywords

actin waves --- curved proteins --- dynamic instability --- podosomes --- diffusion --- cell polarity --- Cdc42 --- stress --- cellular memory --- phase separation --- prions --- apoptotic extrusion --- oncogenic extrusion --- contractility --- actomyosin --- bottom-up synthetic biology --- motor proteins --- pattern formation --- self-organization --- cell motility --- signal transduction --- actin dynamics --- intracellular waves --- polarization --- direction sensing --- symmetry-breaking --- biphasic responses --- reaction-diffusion --- membrane and cortical tension --- cell fusion --- cortexillin --- cytokinesis --- Dictyostelium --- myosin --- symmetry breaking --- cytoplasmic flow --- phase-space analysis --- nonlinear waves --- actin polymerization --- bifurcation theory --- mass conservation --- spatial localization --- activator–inhibitor models --- developmental transitions --- cell polarization --- mathematical model --- fission yeast --- reaction–diffusion model --- small GTPases --- Cdc42 oscillations --- pseudopod --- Ras activation --- cytoskeleton --- chemotaxis --- neutrophils --- natural variation --- modelling --- activator-substrate mechanism --- mass-conserved models --- intracellular polarization --- partial differential equations --- sensitivity analysis --- GTPase activating protein (GAP) --- fission yeast Schizosaccharomyces pombe --- CRY2-CIBN --- optogenetics --- clustering --- positive feedback --- network evolution --- Saccharomyces cerevisiae --- polarity --- modularity --- neutrality --- n/a


Book
Why stock markets crash : critical events in complex financial systems
Authors: ---
Year: 2017 Publisher: Princeton, [New Jersey] ; Oxford, [England] : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The scientific study of complex systems has transformed a wide range of disciplines in recent years, enabling researchers in both the natural and social sciences to model and predict phenomena as diverse as earthquakes, global warming, demographic patterns, financial crises, and the failure of materials. In this book, Didier Sornette boldly applies his varied experience in these areas to propose a simple, powerful, and general theory of how, why, and when stock markets crash. Most attempts to explain market failures seek to pinpoint triggering mechanisms that occur hours, days, or weeks before the collapse. Sornette proposes a radically different view: the underlying cause can be sought months and even years before the abrupt, catastrophic event in the build-up of cooperative speculation, which often translates into an accelerating rise of the market price, otherwise known as a "bubble." Anchoring his sophisticated, step-by-step analysis in leading-edge physical and statistical modeling techniques, he unearths remarkable insights and some predictions--among them, that the "end of the growth era" will occur around 2050. Sornette probes major historical precedents, from the decades-long "tulip mania" in the Netherlands that wilted suddenly in 1637 to the South Sea Bubble that ended with the first huge market crash in England in 1720, to the Great Crash of October 1929 and Black Monday in 1987, to cite just a few. He concludes that most explanations other than cooperative self-organization fail to account for the subtle bubbles by which the markets lay the groundwork for catastrophe. Any investor or investment professional who seeks a genuine understanding of looming financial disasters should read this book. Physicists, geologists, biologists, economists, and others will welcome Why Stock Markets Crash as a highly original "scientific tale," as Sornette aptly puts it, of the exciting and sometimes fearsome--but no longer quite so unfathomable--world of stock markets.

Listing 1 - 2 of 2
Sort by