Listing 1 - 10 of 289 | << page >> |
Sort by
|
Choose an application
This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography. 380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes, …) and second degree (ellipses, hyperboloids, …) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc. Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.
Geometry --- Mathematics --- wiskunde --- geometrie --- Geometry, Algebraic.
Choose an application
This book deals with the geometry of the visual space in all its aspects. As in any branch of mathematics, the aim is to trace the hidden to the obvious; the peculiarity of geometry is that the obvious is sometimes literally before one's eyes. Starting from intuition, spatial concepts are embedded in the pre-existing mathematical framework of linear algebra and calculus. The path from visualization to mathematically exact language is the content of this book. This is intended to close an often-lamented gap in understanding between descriptive preschool and school geometry and the abstract concepts of linear algebra and calculus. At the same time, it justifies descriptive geometric argumentation, because its embedding in the strict mathematical language is clarified. Geometric terms are of very different kinds; they denote, so to speak, different layers of geometric thinking: some arguments use only concepts such as point, straight line, and incidence, some require angles and distances, and others symmetry. Each of these conceptual fields determines a separate subfield of geometry and a separate chapter of this book, with the exception of the one last-mentioned "symmetry", which runs through all the others: - Incidence: Projective geometry - Parallelism: Affine geometry - Angle: Conformal Geometry - Distance: Metric Geometry - Curvature: Differential Geometry - Angle as distance measure: Spherical and Hyperbolic Geometry - Symmetry: Mapping Geometry. This book is a translation of the original German 1st edition Geometrie - Anschauung und Begriffe by Jost-Hinrich Eschenburg, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Geometry --- geometrie --- Geometry.. --- Mathematics.. --- Science. --- Geometria
Choose an application
Les représentations numériques 3D ont révolutionné notre compréhension du monde. Elles sont devenues indispensables pour simuler des opérations chirurgicales, créer de nouveaux modes d’expression artistique ou explorer les ressources naturelles. La géométrie algorithmique apparaît à l’intersection de la géométrie et de l’informatique. Comment échantillonner, représenter et traiter des formes géométriques complexes ? Comment offrir des garanties théoriques sur la qualité des approximations et la complexité des algorithmes ? Comment assurer la fiabilité et l’efficacité des programmes informatiques ? Ces questions se posent en dimensions 2 et 3, mais aussi en plus grandes dimensions, pour analyser par exemple les grandes masses de données essentielles à la science moderne.
Multidisciplinary --- informatique --- Informatique et sciences numériques --- sciences numériques --- géométrie des données --- géométrie algorithmique --- données massives --- algorithmes
Choose an application
This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990. The area of symplectic geometry has developed rapidly in the past ten years with major new discoveries that were motivated by and have provided links with many other subjects such as dynamical systems, topology, gauge theory, mathematical physics and singularity theory. The conference brought together a number of leading experts in these areas of mathematics. The contributions to this volume reflect the richness of the subject and include expository papers as well as original research. They will be an essential source for all research mathematicians in symplectic geometry.
Symplectic geometry. --- Geometry, Differential. --- Differential geometry --- Geometry, Differential --- Symplectic geometry --- Géometrie différentielle --- Géometrie symplectique
Choose an application
This book presents the classical theory of curves in the plane and three-dimensional space, and the classical theory of surfaces in three-dimensional space. It pays particular attention to the historical development of the theory and the preliminary approaches that support contemporary geometrical notions. It includes a chapter that lists a very wide scope of plane curves and their properties. The book approaches the threshold of algebraic topology, providing an integrated presentation fully accessible to undergraduate-level students. At the end of the 17th century, Newton and Leibniz developed differential calculus, thus making available the very wide range of differentiable functions, not just those constructed from polynomials. During the 18th century, Euler applied these ideas to establish what is still today the classical theory of most general curves and surfaces, largely used in engineering. Enter this fascinating world through amazing theorems and a wide supply of surprising examples. Reach the doors of algebraic topology by discovering just how an integer (= the Euler-Poincaré characteristics) associated with a surface gives you a lot of interesting information on the shape of the surface. And penetrate the intriguing world of Riemannian geometry, the geometry that underlies the theory of relativity. The book is of interest to all those who teach classical differential geometry up to quite an advanced level. The chapter on Riemannian geometry is of great interest to those who have to “intuitively” introduce students to the highly technical nature of this branch of mathematics, in particular when preparing students for courses on relativity.
Differential geometry. Global analysis --- Geometry --- Mathematics --- differentiaal geometrie --- wiskunde --- geometrie --- Geometry, Differential.
Choose an application
This book provides an introduction to symplectic field theory, a new and important subject which is currently being developed. The starting point of this theory are compactness results for holomorphic curves established in the last decade. The author presents a systematic introduction providing a lot of background material, much of which is scattered throughout the literature. Since the content grew out of lectures given by the author, the main aim is to provide an entry point into symplectic field theory for non-specialists and for graduate students. Extensions of certain compactness results, which are believed to be true by the specialists but have not yet been published in the literature in detail, top off the scope of this monograph.
Differential geometry. Global analysis --- Differential topology --- Mathematics --- differentiaal geometrie --- wiskunde --- geometrie --- topologie --- Symplectic geometry.
Choose an application
The principle aim of this unique text is to illuminate the beauty of the subject both with abstractions like proofs and mathematical text, and with visuals, such as abundant illustrations and diagrams. With few mathematical prerequisites, geometry is presented through the lens of linear fractional transformations. The exposition is motivational and the well-placed examples and exercises give students ample opportunity to pause and digest the material. The subject builds from the fundamentals of Euclidean geometry, to inversive geometry, and, finally, to hyperbolic geometry at the end. Throughout, the author aims to express the underlying philosophy behind the definitions and mathematical reasoning. This text may be used as primary for an undergraduate geometry course or a freshman seminar in geometry, or as supplemental to instructors in their undergraduate courses in complex analysis, algebra, and number theory. There are elective courses that bring together seemingly disparate topics and this text would be a welcome accompaniment.
Group theory --- Differential geometry. Global analysis --- Geometry --- differentiaal geometrie --- wiskunde --- geometrie --- Transformations (Mathematics) --- Transformacions (Matemàtica)
Choose an application
Geometry --- Géométrie --- Algorithmische Geometrie. --- Zeitschrift. --- Data processing --- Informatique --- Data processing. --- Algorithmische Geometrie --- Zeitschrift --- Mathematics --- Euclid's Elements --- Periodikum --- Zeitschriften --- Presse --- Fortlaufendes Sammelwerk --- Computergeometrie --- Computational geometry --- Berechenbare Geometrie --- Geometrie-Algorithmen --- Geometrie --- Geometrische Modellierung --- Geometrieverarbeitung --- Algorithmus
Choose an application
Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found, the solutions of which have led to various presently very active domains of research, especially in algebra. The recognition of the coherence of two-by-two contradictory axiomatic systems for geometry (like one single parallel, no parallel at all, several parallels) has led to the emergence of mathematical theories based on an arbitrary system of axioms, an essential feature of contemporary mathematics. This is a fascinating book for all those who teach or study axiomatic geometry, and who are interested in the history of geometry or who want to see a complete proof of one of the famous problems encountered, but not solved, during their studies: circle squaring, duplication of the cube, trisection of the angle, construction of regular polygons, construction of models of non-Euclidean geometries, etc. It also provides hundreds of figures that support intuition. Through 35 centuries of the history of geometry, discover the birth and follow the evolution of those innovative ideas that allowed humankind to develop so many aspects of contemporary mathematics. Understand the various levels of rigor which successively established themselves through the centuries. Be amazed, as mathematicians of the 19th century were, when observing that both an axiom and its contradiction can be chosen as a valid basis for developing a mathematical theory. Pass through the door of this incredible world of axiomatic mathematical theories!
Geometry --- Mathematics --- wiskunde --- geometrie --- Geometry. --- Axiomatic set theory.
Choose an application
This book draws on elements from everyday life, architecture, and the arts to provide the reader with elementary notions of geometric topology. Pac Man, subway maps, and architectural blueprints are the starting point for exploring how knowledge about geometry and, more specifically, topology has been consolidated over time, offering a learning journey that is both dense and enjoyable. The text begins with a discussion of mathematical models, moving on to Platonic and Keplerian theories that explain the Cosmos. Geometry from Felix Klein's point of view is then presented, paving the way to an introduction to topology. The final chapters present the concepts of closed, orientable, and non-orientable surfaces, as well as hypersurface models. Adopting a style that is both rigorous and accessible, this book will appeal to a broad audience, from curious students and researchers in various areas of knowledge to everyone who feels instigated by the power of mathematics in representing our world - and beyond. .
Listing 1 - 10 of 289 | << page >> |
Sort by
|