Listing 1 - 2 of 2 |
Sort by
|
Choose an application
The science of human genetics has advanced at an exponential pace since the double-helix structure of DNA was identified in 1953. Within only 25 years of that discovery, the first gene was sequenced. Subsequent efforts in the span of a few decades have brought advanced next-generation sequencing and new tools for genome editing, allowing scientists to write and rewrite the code of life. We are now realizing that genetics represents yet another system of information technology that follows Moore’s law, stating that computer processing power roughly doubles every two years. Importantly, with such rapid and sophisticated advancements, any tools or studies applicable to adult genetics can now also be applied to embryos.Genetic disorders affect 1% of live births and are responsible for 20% of pediatric hospitalizations and 20% of infant mortality. Many disorders are caused by recessive or X-linked genetic mutations carried by 85% of humans. Because assisted reproduction has armed us with technologies like in vitro fertilization that provide access to human embryos, we began to screen some genetic diseases simply by selecting sex. The first live births following preimplantation genetic testing (PGT) to identify sex in X-linked disease were reported by Alan Handyside in 1990. This groundbreaking work used the identification of male embryos and selective transfer of unaffected normal or carrier females as proof-of-concept to avoid genetic diseases, paving the way to extend the concept to PGT for monogenic diseases (PGT-M), including Mendelian single-gene defects (autosomal dominant/recessive, X-linked dominant/recessive), severe childhood lethality or early-onset disease, cancer predisposition, and HLA typing for histocompatible cord-blood stem cells’ transplantation. Later, we moved onto the identification and selection of euploid embryos by analysing all 23 pairs of chromosomes in 4–8 cells from the trophectoderm, called PGT for aneuploidy (PGT-A). PGT-A currently leverages next-generation sequencing technologies to uncover meiotic- and mitotic-origin aneuploidies affecting whole chromosomes, as well as duplications/deletions of small chromosome regions. A step forward was the use of structural chromosome rearrangements (PGT-SR) to identify Robertsonian and reciprocal translocations, inversions, and balanced vs. unbalanced rearrangements. Another advancement came with PGT for polygenic risk scoring (PGT-P). This technique takes us from learning how to read simple words to starting to understand poetry (i.e., evolving from PGT-M/A/SR to PGT-P for multifactorial, polygenic risk prediction). Moreover, we are moving from embryo selection to intervention because the genetic code is not only readable, but also re-writeable. Indeed, gene editing is now possible using tools like CRISPR/Cas9, which are applicable to all species, including human embryos.
extracellular vesicles --- exosomes --- microvesicles --- apoptotic bodies --- DNA --- preimplantation embryos --- murine blastocysts --- embryo --- uterus --- window of implantation --- PGT-A --- PGT-SR --- mosaicism --- embryo genetics --- chromosomal abnormality --- preimplantation genetic testing --- PGT-P --- polygenic risk scoring --- genomic index --- relative risk reduction --- combined preimplantation genetic testing --- Preimplantation genetic testing for monogenic disorders (PGT-M) --- Preimplantation genetic testing for aneuploidy assessment (PGT-A) --- Autosomal dominant polycystic kidney disease (ADPKD) --- male infertility --- advanced maternal age --- aneuploidy --- NGS --- segmental --- translocations --- monogenic disease --- multiplex PCR --- SNP array --- genome editing --- genetic diseases --- embryos --- vitrification --- ovarian response --- female age --- genetic testing --- reproductive health --- next-generation sequencing --- whole exome sequencing --- perinatal care --- infertility --- aneuploidies --- polygenic disease --- blastocyst --- endometrium --- implantation
Choose an application
Forests are the richest and most complex ecosystems in the world. Due to the abundance of species and their intricate relationships, huge problems are faced when investigating and analyzing them, despite the fact that increasingly sophisticated research tools are currently available. This is also true in the case of the largest group of animals in the world, i.e., insects inhabiting the forest environment. We are currently living in times of dramatic environmental changes triggered by human activity. The effects of climate change are evident and lead to changes in forests. Growing numbers of insect species are being threatened, and it is our responsibility to protect them. This Special Issue of our journal aims to provide a platform for scientific discussions on an array of research problems, such as geographic or historic diversity of forest insects, their variability, habitat preferences, as well as their monitoring or use as bioindicators of environmental changes. We are convinced that this Special Issue will not only be a source of inspiration for further research but will also contribute to reaching a reasonable compromise between the necessary protection of forests and the need for economic benefits. It is our belief that entomological studies will be of considerable value in these efforts.
Research & information: general --- Biology, life sciences --- Forestry & related industries --- pine --- Pinus --- invasion track --- new distribution --- alien --- trap --- Anisandrus dispar --- Cyclorhipidion bodoanum --- deadwood --- invasive species --- Xyleborus saxesenii --- Xyleborinus attenuatus --- Xylosandrus germanus --- Scolytinae --- Quercus --- associational susceptibility --- forest protection --- phenological synchrony --- Operophtera brumata --- Agriopis leucophaearia --- bud burst --- herbivory --- xylophagous beetles --- distribution --- Bursaphelenchus xylophilus --- biodiversity --- Pinus sylvestris --- Coleoptera --- Ips typographus --- Thanasimus spp. --- bark beetles --- Norway spruce --- mass trapping --- attractants --- release rate --- trap type --- integrated pest management --- Collembola --- Arachnida --- Insecta --- ecology of arthropods --- zoogeography --- ambrosia beetle --- bark beetle --- MaxEnt --- insect pest --- alien species --- niche modelling --- biological invasions --- Lymantria dispar asiatica --- Asian spongy moth (ASM) --- female flight ability --- flight mill --- female age --- female flight duration --- female flight distance --- anthropogenic disturbances --- environmental monitoring --- forest reserve --- long-term research --- natural succession --- oak-hornbeam forests --- stability of mite communities --- Uropodina --- n/a
Listing 1 - 2 of 2 |
Sort by
|