Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The enhancement of life and the performance of metal engineering components is mainly determined by surface characteristics. The latter has a pivotal role in enhancing the life of products since they control the mechanical, electrical, thermal, and electronic properties. Nevertheless, the surface and near-surface properties are crucial in failure mechanisms since the loss of performance and failures mostly begin from the surface. Research advances in the designing, processing, and characterizing of textured surfaces broadly support innovative industrial applications and products.The performance improvement in engineering components during operation is a challenging issue and surface engineering methods have been attracting considerable interest in both research and industrial fields. Even though many attempts have been made to face the wear of metals by tuning the physical, chemical, mechanical, and metallurgical properties of their surfaces, several important aspects need to be still deepened.The present book collects original research papers and a review that covers the latest development in methods for enhancing the life and functionality of engineering components by tuning the physical, chemical, mechanical, and metallurgical properties of their surfaces. Attention is focused on processing and characterizing methods capable of supporting industrial applications and products to both tackle surface degradation and improve the performance and reliability of components.
HVOF coatings --- sliding wear --- brake systems --- magnesium alloy --- forging --- fatigue --- microstructure --- plasma electrolytic oxidation (PEO) --- micro arc oxidation (MAO) --- electroplating --- Ni–P coatings --- SiC particles --- heat treatment --- wear --- laser hardening --- ausferrite --- austempered ductile iron --- nodular iron --- hardfacing --- high chromium cast iron --- erosion tests --- wear resistance --- n/a --- Ni-P coatings
Choose an application
The demand for cast iron components, with weights ranging from a few kilograms to several tons, has increased significantly in recent years, both for technical and economic reasons. In fact, the lower cost compared to other alloys, and the good castability, which allow one to obtain near-net shape components in as-cast conditions, and the mechanical properties that can be obtained, are just some of the motivations that attract mechanical designers. However, correct design requires a good knowledge of the intrinsic correlation among alloy chemical composition, process parameters, microstructure (with casting defects) and mechanical properties. This book is aimed at collecting excellent and recent research experimental and theoretical works in this filed. Technological (say, wear resistance and weldability) and mechanical properties (say, Young modulus, static and fatigue strength) of different grades of cast irons, ranging from solution strengthened ferritic ductile iron to compacted graphite iron as well as white and nodular cast irons, are correlated with the alloy chemical composition, process parameters and casting dimension.
boundary element method (BEM) --- periodic boundary conditions --- representative volume elements (RVEs) --- effective elastic properties --- homogenization --- lamellar graphite iron --- ultimate tensile strength --- primary austenite --- gravity casting process simulation --- nodular cast iron --- effective Young’s modulus --- computational homogenization --- multiscale numerical methods --- micro-CT --- finite elements --- n/a --- silicon solution strengthened ferritic ductile iron --- thickness --- solidification time --- microstructure --- mechanical properties --- fatigue --- thermal analysis --- weldability --- pre-heating --- spheroidal graphite cast iron --- ductile cast irons --- tensile tests --- plasticity modelling --- compacted graphite iron --- minimum quantity lubrication (MQL) --- drilling machinability --- dry machining --- ductile iron --- cooling rate --- segregation --- cast iron --- high-chromium --- abrasive wear --- niobium alloying --- high chromium cast irons --- eutectic carbide --- carbide volume fraction --- chemical composition --- image analysis --- simulation --- MatCalc --- hardness --- effective Young's modulus
Choose an application
Laser processing has become more relevant today due to its fast adaptation to the most critical technological tasks, its ability to provide processing in the most rarefied and aggressive mediums (vacuum conditions), its wide field of potential applications, and the green aspects related to the absence of industrial cutting chips and dust. With the development of 3D production, laser processing has received renewed interest associated with its ability to achieve pointed to high-precision powder melting or sintering. New technologies and equipment, which improve and modify optical laser parameters, contribute to better absorption of laser energy by metals or powder surfaces and allow for multiplying laser power that can positively influence the industrial spread of the laser in mass production and advance the existing manufacturing methods. The latest achievements in laser processing have become a relevant topic in the most authoritative scientific journals and conferences in the last half-century. Advances in laser processing have received multiple awards in the most prestigious competitions and exhibitions worldwide and at international scientific events. The Special Issue is devoted to the most recent achievements in the laser processing of various materials, such as cast irons, tool steels, high entropy alloys, hard-to-remelt materials, cement mortars, and post-processing and innovative manufacturing based on a laser.
Technology: general issues --- History of engineering & technology --- composition --- laser bionic unit --- tensile properties --- wear resistance --- laser remelting --- ductile iron --- bionic crack blocked unit --- repair discontinuously --- thermal fatigue crack --- laser melting --- biomimetic model --- brake pads --- surface wear --- laser cladding --- high entropy alloy --- specific energy --- phase transformation --- anticorrosion steel --- hardness --- laser powder bed fusion --- microroughness --- tensile test --- corrosion susceptibility --- defocusing --- microstructure --- offset --- stress relief heat treatment --- ultrasonic peening --- surface roughness --- laser polishing --- quadratic laser spot --- tool steel 1.2379 --- area rate --- cement-based material --- laser scabbling --- microstructural analysis --- chemical analysis --- thermal properties --- laser treatment --- cast irons --- mechanical properties --- wear --- energy excess --- heat diffusion --- laser beam mode --- numerical simulation --- profiling --- power density distribution --- thermal conductivity --- surface cleaning --- selective laser melting --- atmospheric plasma sources --- dielectric barrier discharge --- nickel alloy --- titanium alloy --- n/a
Listing 1 - 3 of 3 |
Sort by
|