Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Although the seminal work of Fujishima et al. dates back to 1971, TiO2 still remains the most diffused and studied semiconductor, employed in photo-oxidation processes for cleantech (i.e., polluted water and air treatment), in solar fuel production (mainly hydrogen production by water photo splitting), and in Carbon Capture and Utilization (CCU) processes by CO2 photoreduction. The eleven articles, among them three reviews, in this book cover recent results and research trends of various aspects of titanium dioxide photocatalysis, with the chief aim of improving the final efficiency of TiO2-based materials. Strategies include doping, metal co-catalyst deposition, and the realization of composites with plasmonic materials, other semiconductors, and graphene. Photocatalysts with high efficiency and selectivity can be also obtained by controlling the precise crystal shape (and homogeneous size) and the organization in superstructures from ultrathin films to hierarchical nanostructures. Finally, the theoretical modeling of TiO2 nanoparticles is discussed and highlighted. The range of topics addressed in this book will stimulate the reader’s interest as well as provide a valuable source of information for researchers in academia and industry.
UV-visible --- n/a --- oxidative reaction systems --- photodegradation --- nanospheres --- heterojunction --- Ag/AgCl@TiO2 fibers --- polymorphism --- XRD --- copper-modified titania --- ultrasonic vibration --- brookite --- TiO2 modification --- simulated Extended X-ray Adsorption Fine-Structure (EXAFS) --- nanorod spheres --- trapped electrons --- flame-spray pyrolysis --- titania/water interface --- microwave irradiation --- plasmonic photocatalyst --- graphene-TiO2 --- photocatalytic hydrogen production --- microstreaming --- B3LYP --- HRTEM --- hardness --- printing and dyeing wastewater --- SCC-DFTB --- TiO2 --- photoelectrochemistry --- titanium --- bulk defects --- methanol photo-steam reforming --- spray coating --- sol-gel --- FTIR --- S-doping --- photocatalysis --- sulfidation --- lattice defects --- polymorph --- anodization --- pine-cone TiO2 nanoclusters --- nanorod arrays --- formation mechanism --- Cu and Pt nanoparticles --- excitons --- TiO2 nanotubes --- adhesion --- trapping --- flexible substrates --- optical absorption --- large-sized films --- surface defects --- titanium dioxide --- accumulated electrons
Choose an application
This book is dedicated to highlighting some relevant advances in the field of thin films and coatings based on two-dimensional crystals and layered nanomaterials. Due to their layered structure, graphene and a variety of new 2D inorganic nanosystems, called “graphene analogues”, have all attracted tremendous interest due to their unprecedented properties/superior performance, and may find applications in many fields from electronics to biotechnology. These two-dimensional systems are ultrathin and, hence, tend to be flexible, also presenting distinctive and nearly intrinsic characteristics, including electronic, magnetic, optical, thermal conductivity, and superconducting properties. Furthermore, the combination of different structures and synergetic effects may open new and unprecedented perspectives, making these ideal advanced materials for multifunctional assembled systems. As far as the field of coatings is concerned, new layered nanostructures may offer unique and multifunctional properties, including gas barrier, lubricant, conductive, magnetic, photoactive, self-cleaning, and/or antimicrobial surfaces. This book contains new findings on the synthesis and perspectives of multifunctional films that are at the forefront of the science and coating technologies.
MoS2 nanosheets --- composites coating --- corrosion --- transition metal nitrides --- electrochemical delamination --- Cu film --- dye-sensitized solar cells --- layered materials --- electroless NiP alloy --- bubble transfer --- PtPd --- photoresponse --- van der Waals heterostructures --- MoS2 --- stanene --- water --- microbial fuel cells --- counter electrode --- PEMFC --- combustion --- molybdenum disulfide --- silicene --- free-standing films --- energy conversion efficiency --- nanowire --- chemical vapor transport deposition --- transition metal carbides --- nondestructive --- reusability --- tungsten disulfide --- graphene --- surface enhanced Raman spectroscopy --- 2D --- reduced graphene oxide --- transition metal dichalcogenides --- epitaxial growth --- WS2 --- Pt nanoparticles --- graphene/MoS2/Si heterostructure --- mechanism --- thermal management --- transition metal carbonitrides --- interfaces --- photoluminescence --- air-cathode --- germanene --- 2D materials --- microhardness --- monolayer --- coatings --- stainless steel mesh electrode --- carbon nitride --- chemical vapor deposition --- two-dimensional materials --- plasma --- thermal conductivity --- plasmonic structure --- graphene suspension
Choose an application
Advances in synthesis of metallic, oxidic and composite powders were presented via the following methods: ultrasound-assisted leaching¸ ultrasonic spray pyrolysis, hydrogenation, dehydrogenation, ball milling, molten salt electrolysis, galvanostatic electrolysis, hydrogen reduction, thermochemical decomposition, inductively coupled thermal plasma, precipitation and high pressure carbonation in an autoclave. This Special Issue contains 17 papers from Europe, Asia, Australia, South Africa and the Balkans. The synthesis was focused on metals: Co, Cu; Re; oxides: ZnO, MgO, SiO2; V2O5; sulfides: MoS2, core shell material: Cu-Al2O3, Pt/TiO2; compounds: Ca0.75Ce0.25ZrTi2O7, Mo5Si3, Ti6Al4V. The environmentally friendly strategies were presented at the carbonation of olivine, treatment of acid mine drainage water and production of vanadium oxide.
Ti6Al4V --- HDH --- powder metallurgy --- powder synthesis --- ZnO --- ultrasonic spray pyrolysis --- influential parameters --- formation mechanism --- structure --- morphologies --- characterization --- TEM --- HRTEM --- Mo silicide --- Mo5Si3 --- spheroidizing --- powder --- inductively coupled thermal plasma --- MgCO3-powder --- synthesis --- CO2- absorption --- olivine carbonation --- autoclave --- thermal decomposition --- CO2 utilization --- vanadium precipitation --- vanadium oxides --- vanadium-bearing shale --- vanadium strip liquor --- copper --- electrolysis --- hydrogen --- SEM --- XRD --- PSD --- tribology materials --- tungsten disulfide --- tungsten trioxide --- silica --- precipitation --- uranium --- zirconolite --- brannerite --- betafite --- leaching --- kinetics --- acid mine drainage --- iron --- aluminium --- coagulation --- water treatment --- electrocatalysis --- supported Pt nanoparticles --- Pt/TiO2 synthesis --- Titanium oxide colloid --- acid mine drainage (AMD) --- flotation tailings --- AMD neutralization --- metals’ precipitation --- polluted site remediation --- synergy of processes --- Al-Ti alloy --- electrochemical co-deposition --- chloroaluminate melt --- ammonium perrhenate --- rhenium --- disproportionation reaction --- hydrogen reduction --- oxide --- nanocomposites --- alumina --- thermochemistry --- polycrystalline diamond --- cobalt --- ultrasound --- aqua regia --- polycrystalline diamond blanks
Choose an application
Significant progress has been made in nanophotonics and the use of nanostructured materials for optoelectronic devices, including light-emitting diodes (LEDs) and laser diodes, which have recently attracted considerable attention due to their unique geometry. Nanostructures in small dimensions, comprising nanowires, nanotubes, and nanoparticles, etc,. can be perfectly integrated into a variety of technological platforms, offering novel physical and chemical properties for high-performance, light-emitting devices. This Special Issue aims to present the most recent advances in the field of nanophotonics, which focuses on LEDs and laser diodes. We invite contributions of original research articles, as well as review articles that are aligned to the following topics that include, but are not limited to, thetheoretical calculation, synthesis, characterization, and application of such novel nanostructures for light-emitting devices. The application of nanostructured light-emitters in general lighting, imaging, and displays is also highly encouraged.
Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity --- n/a
Listing 1 - 4 of 4 |
Sort by
|