Listing 1 - 10 of 19 | << page >> |
Sort by
|
Choose an application
L'évolution des architectures des ordinateurs, mais aussi celle des besoins relatifs au volume de données ou à la complexification des algorithmes sont un véritable défi pour les utilisateurs et développeurs R. Il faut nécessairement s'adapter au parallélisme intrinsèque des ordinateurs, et cet ouvrage a pour objectif principal d'initier ses lecteurs aux multiples facettes du calculparallèle avec R. Le premier chapitre pose la problématique de l’efficacité des programmes et de leur optimisation en abordant en particulier les bonnes pratiques à adopter pour améliorer son code. L’architecture des ordinateurs est détaillée dans le deuxième chapitre qui permet de comprendre l’impact du matériel sur les performances des programmes et qui invite à penser « parallèle ». Les chapitres 3 et 4 sont le coeur de cet ouvrage et détaillent les outils disponibles pour programmer efficacement avec R sur une machine multi-coeurs, d’une part nativement dans le langage R et d’autre part en utilisant des fonctions C++ appelées depuis R. Enfin le dernier chapitre aborde l’exploitation de clusters de calcul au travers de R.
Choose an application
The Haifa 2000 Workshop on ""Inherently Parallel Algorithms for Feasibility and Optimization and their Applications"" brought together top scientists in this area. The objective of the Workshop was to discuss, analyze and compare the latest developments in this fast growing field of applied mathematics and to identify topics of research which are of special interest for industrial applications and for further theoretical study. Inherently parallel algorithms, that is, computational methods which are, by their mathematical nature, parallel, have been studied in various contexts for m
Mathematical optimization --- Parallel algorithms --- Algorithms
Choose an application
This book presents the proceedings of the International Conference on Advances in Parallel Computing Technologies and Applications (ICAPTA 2022), held virtually in Bangalore, India. It compiles research on recent developments in parallel computing, focusing on systems, networking, cloud solutions, and management technologies. The conference aimed to provide a platform for scientists, researchers, and practitioners to share innovations and address challenges in the field. Topics include machine learning, software services, and the theoretical and practical aspects of parallel computing. The volume is part of the Advances in Parallel Computing series and is intended for professionals and academics involved in high performance and large scale parallel systems.
Choose an application
Die ersten Kapitel konzentrieren sich auf die Informatik und beinhalten informatische Grundbegriffe, Rechnerarchitekturen und ein Performancemodell, OpenMP als Programmierumgebung für Mehrkernrechner und MPI und PVM als Programmiermodelle für Rechner mit verteiltem Speicher. Anschließend werden mathematische Algorithmen, Performancebetrachtungen, Design paralleler Programme und Ausführungen zu Simulationsprogrammen aus den Ingenieur- und Naturwissenschaften gegenübergestellt. Die nächsten Kapitel sind Performancebetrachtungen und Parallelisierungsstrategien für mathematische Algorithmen gewidmet, bevor abschließend GPUs behandelt und Teile der zuvor erläuterten Algorithmen auf diese übertragen und diskutiert werden. Roter Faden durch das mit vielen Erläuterungen und Quelltextbeispielen angereicherte Buch ist die Performanceanalyse unterschiedlicher Speicherungstechniken von Feldern am Beispiel der algorithmischen Lösung linearer Gleichungssysteme. Dazu wird zunächst das Gaußsche Eliminationsverfahren auf ein Blockverfahren umgestellt und dieses mit sehr hoher Performance auf einem Mehrkernrechner parallelisiert. Bei der iterativen Lösung linearer Gleichungssysteme steht das konjugierte Gradienten-Verfahren und seine fein granulare Parallelisierung im Vordergrund. Besonderes Augenmerk richtet sich dabei auf die Matrix-Vektor-Multiplikation und die Abhängigkeit der Performance von der Speicherungstechnik der Matrix. Gebietszerlegungsmethoden zur Lösung linearer Gleichungssysteme bieten einen grob granularen Parallelisierungsansatz, der für das massiv parallele Rechnen der fein granularen Parallelisierung auf Schleifenebene überlegen ist.
Choose an application
This book constitutes the refereed proceedings of the 11th International Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2020, held in Shenzhen, China, in December 2020. The 37 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers deal with research results and development activities in all aspects of parallel architectures, algorithms and programming techniques.
Microprocessors. --- Processor Architectures. --- Minicomputers --- Parallel algorithms --- Computer algorithms --- Parallel programming (Computer science) --- Algorithms
Choose an application
Annotation
Computer Science --- Engineering & Applied Sciences --- Computer architecture. --- Parallel algorithms. --- Parallel programming (Computer science) --- Parallel programming (Computer science). --- COMPUTER SCIENCE/Programming Languages --- Architecture, Computer --- Computer programming --- Parallel processing (Electronic computers) --- Algorithms
Choose an application
mathematics --- modeling --- physics --- numerical analysis --- parallel algorithms --- economical modeling --- Mathematical analysis --- Mathematical models --- Models, Mathematical --- Simulation methods --- 517.1 Mathematical analysis --- Mathematical analysis. --- Mathematical models. --- Advanced calculus --- Analysis (Mathematics) --- Algebra
Choose an application
This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms and deep dives into several applications make the book equally useful for researchers, students and practitioners.
Machine learning --- Data mining --- Parallel algorithms --- Parallel programs (Computer programs) --- Apprentissage automatique --- Exploration de données (Informatique) --- Algorithmes parallèles --- Programmes parallèles (Logiciels) --- Exploration de données (Informatique) --- Algorithmes parallèles --- Programmes parallèles (Logiciels) --- Machine Learning --- Machine learning. --- Data mining. --- Parallel algorithms. --- Parallel computer programs --- Parallel processing (Electronic computers) --- Computer programs --- Algorithms --- Algorithmic knowledge discovery --- Factual data analysis --- KDD (Information retrieval) --- Knowledge discovery in data --- Knowledge discovery in databases --- Mining, Data --- Database searching --- Learning, Machine --- Artificial intelligence --- Machine theory
Choose an application
This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for p
Algebras, Linear --- Numerical calculations --- Parallel processing (Electronic computers) --- Parallel algorithms --- Algorithms --- High performance computing --- Multiprocessors --- Parallel programming (Computer science) --- Supercomputers --- Numerical analysis --- Linear algebra --- Algebra, Universal --- Generalized spaces --- Mathematical analysis --- Calculus of operations --- Line geometry --- Topology --- Algèbre linéaire --- Calculs numériques --- Calculs numériques --- Algèbre linéaire --- Parallélisme (Informatique) --- Parallel algorithms. --- Algebras, Linear. --- Numerical calculations. --- Algorithmes --- Analyse numérique. --- Itération (mathématiques) --- Iterative methods (Mathematics) --- Analyse numérique. --- Itération (mathématiques)
Choose an application
Algorismes --- Simulació per ordinador --- Models per ordinador --- Simulació (Informàtica) --- Mètodes de simulació --- Models matemàtics --- Realitat virtual --- Sistemes virtuals (Informàtica) --- Fabricació integrada per ordinador --- Algorisme d'Euclides --- Algoritmes --- Àlgebra --- Algorismes computacionals --- Algorismes genètics --- Anàlisi numèrica --- Funcions recursives --- Programació (Matemàtica) --- Programació (Ordinadors) --- Teoria de màquines --- Traducció automàtica --- Parallel algorithms --- Computer simulation --- Algorithms
Listing 1 - 10 of 19 | << page >> |
Sort by
|