Narrow your search
Listing 1 - 9 of 9
Sort by

Book
Engineering with Mathcad : using Mathcad to create and organize your engineering calculations
Author:
ISBN: 128072949X 9786610729494 008046694X 9780080466941 0750667028 9780750667029 Year: 2006 Publisher: London : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Using the author's considerable experience of applying Mathcad to engineering problems, Engineering with Mathcad identifies the most powerful functions and features of the software and teaches how to apply these to create comprehensive engineering calculations. Many examples from a variety of engineering fields demonstrate the power and utility of Mathcad's tools, while also demonstrating how other software, such as Microsoft Excel spreadsheets, can be incorporated effectively. This simple, step-by-step approach makes this book an ideal Mathcad text for professional engineers as well as


Book
Essential Mathcad for engineering, science, and math ISE
Author:
ISBN: 9780123747839 012374783X 1282168339 008091229X 9786612168338 6612168331 9781282168336 Year: 2009 Publisher: Amsterdam : Burlington, MA : Elsevier ; Academic Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Using the author's considerable experience of applying Mathcad to engineering problems, Essential Mathcad introduces the most powerful functions and features of the software and teaches how to apply these to create comprehensive calculations for any quantitative subject. The simple, step-by-step approach makes this book an ideal Mathcad text for professional engineers as well as engineering , science, and math students. Examples from a variety of fields demonstrate the power and utility of Mathcad's tools, while also demonstrating how other software, such as Excel spreadsheets, can be incorpor


Book
Essential PTC® Mathcad Prime® 3.0 : A Guide for New and Current Users
Author:
Year: 2013 Publisher: Burlington : Elsevier Science,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Learn how to use PTC Mathcad Prime 3.0, one of the world's leading tools for technical computing, in the context of engineering, science, and math applications. Quickly harness the power of Mathcad to solve simple and complex problems. Essential PTC Mathcad is perfect for college students and first-time users as well as for experienced Mathcad users who are moving to Prime 3.0. The book introduces the most powerful functions and features of the new Prime 3.0 software and teaches how to apply them to create comprehensive calculations for any quantitative subject. Examples from


Book
Slopes and levels : spice models to simulate vintage op-amp noise
Author:
ISBN: 9783030994433 Year: 2022 Publisher: Cham, Switzerland : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Intelligent routines : solving mathematical analysis with Matlab, Mathcad, Mathematica and Maple
Authors: ---
ISBN: 3642284744 3642430732 3642284752 Year: 2012 Publisher: Heidelberg ; New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Real Analysis is a discipline of intensive study in many institutions of higher education, because it contains useful concepts and fundamental results in the study of mathematics and physics, of the technical disciplines and geometry. This book is the first one of its kind that solves mathematical analysis problems with all four related main software Matlab, Mathcad, Mathematica and Maple. Besides the fundamental theoretical notions, the book contains many exercises, solved both mathematically and by computer, using: Matlab 7.9, Mathcad 14, Mathematica 8 or Maple 15 programming languages. The book is divided into nine chapters, which illustrate the application of the mathematical concepts using the computer. Each chapter presents the fundamental concepts and the elements required to solve the problems contained in that chapter and finishes with some problems left to be solved by the readers. The calculations can be verified by using  a specific software such as Matlab, Mathcad, Mathematica or Maple.

Differential models : an introduction with Mathcad
Authors: ---
ISBN: 1280312858 9786610312856 3540268200 3540208526 3642058787 Year: 2005 Publisher: Berlin : Springer-Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Differential equations are often used in mathematical models for technological processes or devices. However, the design of a differential mathematical model is crucial and difficult in engineering. As a hands-on approach to learn how to pose a differential mathematical model the authors have selected 9 examples with important practical application and treat them as following: - Problem-setting and physical model formulation - Designing the differential mathematical model - Integration of the differential equations - Visualization of results Each step of the development of a differential model is enriched by respective Mathcad 11 commands, todays necessary linkage of engineering significance and high computing complexity. To support readers of the book with respect to changes that might occur in future versions of Mathcad (Mathcad 12 for example), updates of examples, codes etc. can be downloaded from the following web page www.thermal.ru. Readers can work with Mathcad-sheets of the book without any Mathcad by help Mathcad Application Server Technology.

Optics : learning by computing with examples using MathCAD®, Matlab®, Mathematica®, and Maple®
Author:
ISBN: 0387694927 0387261680 9780387261683 Year: 2007 Publisher: New York: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering; it uses scripts from Maple, MathCad, Mathematica, and MATLAB provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course, including: geometrical optics and aberration, interference and diffraction, coherence, Maxwell's equations, wave guides and propagating modes, blackbody radiation, atomic emission and lasers, optical properties of materials, Fourier transforms and FT spectroscopy, image formation, and holography. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The basic text is supplemented by over 170 files in Maple, MathCad, Mathematica, and MATLAB (many of which are in the text, each suggesting programs to solve a particular problem, and each linked to a topic in or application of optics. The computer files are dynamic, allowing the reader to see instantly the effects of changing parameters in the equations. Students are thus encouraged to ask "What if?" questions to asses the physical implications of the formulas. The discussion of Fourier transforms in particular is enhanced by the availability of numerical methods. The book is written for the study of particular projects but can easily be adapted to other situations. The threefold arrangement of text, applications, and files makes the book suitable for "self-learning" by scientists or engineers who would like to refresh their knowledge of optics.In the classroom, the Maple, MathCad, Mathematica, and MATLAB scripts can serve as starting points for homework; outside, they can help find solutions to complex problems in engineering applications. Some praise for the previous edition: OPTICS AND PHOTONICS NEWS [OCTOBER 2004] "This book cover geometrical optics, electromagnetic theory, interference, diffraction and coherence theory. Chapters on optical constants, blackbody radiation, emission and absorption, lasers, holography and Fourier transform spectroscopy broaden its scope. The packet contains over 170 MathCAD files linked to specific topics and applications. … [T]he main virtues of the book are the excellent photographs of basic optical phenomena. … The index is comprehensive. … [The book] will certainly be helpful to … students in an introductory optics course." THE PHYSICIST (March/April 2004) "The author has developed a suite of model programs covering the whole spectrum of optics from classical geometric ray to wave and modern optics. Illustrative resonator and waveguide modes are also part of the program mix as well as introductory laser theory. In addition to an optics course, this book would be useful in a 3rd or 4th year electromagnetism course as well as an introduction to lasers and resonators. There are certainly more topics in this text than could possibly be covered in the typical 30 hour one semester course. ... All formulas and diagrams are provided in Adobe .pdf files as well for transcription into other software suites or inclusion in notes. This book is a comprehensive optics text that has been written in a mode to encourage students to run the models, do the calculations and generate their own illustrations. ... The book would serve as an excellent text for undergraduate use and reference for laboratory simulation experiments.".


Book
Chemical kinetics with MathCad and Maple
Authors: ---
ISBN: 370911750X 3709105307 3709105315 Year: 2011 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The authors explain at length the principles of chemical kinetics and approaches to computerized calculations in modern software suites — mathcad and maple. Mathematics is crucial in determining correlations in chemical processes and requires various numerical approaches. Often significant issues with mathematical formalizations of chemical problems arise and many kinetic problems can´t be solved without computers. Numerous problems encountered in solving kinetics´ calculations with detailed descriptions of the numerical tools are given. Special attention is given to electrochemical reactions, which fills a gap in existing texts not covering this topic in detail. The material demonstrates how these suites provide quick and precise behavior predictions for a system over time (for postulated mechanisms).Examples, i.e., oscillating and non-isothermal reactions, help explain the use of mathcad more efficiently. Also included are the results of authors’ own research toward effective computations.


Book
Aero/Hydrodynamics and Symmetry
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents collective works published in the recent Special Issue (SI) entitled "Aero/Hydrodynamics and Symmetry". These works address the existence of symmetry and its breakdown in aero-/hydro-dynamics and their related applications. The presented problems are complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics phenomena. The applications vary and range from polymer chain transfer in micro-channel to the evaluation of vertical axis wind turbines, as well as autonomous underwater hovering vehicles. Recent advances in numerical, theoretical, and experimental methodologies, as well as finding new physics, new methodological developments, and their limitations are presented within the scope of the current book. Among others, in the presented works, special attention is paid to validation and improving the accuracy of the presented methodologies. This book brings together a collection of inter-/multi-disciplinary works applied to many engineering applications in a coherent manner.

Keywords

Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K)

Listing 1 - 9 of 9
Sort by