Listing 1 - 10 of 327 | << page >> |
Sort by
|
Choose an application
Gravity --- Measurement.
Choose an application
Today we are blessed with two extraordinarily successful theories of physics. The first is Albert Einstein's general theory of relativity, which describes the large-scale behaviour of matter in a curved spacetime. This theory is the basis for the standard model of big bang cosmology. The discovery of gravitational waves at the LIGO observatory in the US (and then Virgo, in Italy) is only the most recent of this theory's many triumphs. The second is quantum mechanics. This theory describes the properties and behaviour of matter and radiation at their smallest scales. It is the basis for the standard model of particle physics, which builds up all the visible constituents of the universe out of collections of quarks, electrons and force-carrying particles such as photons. The discovery of the Higgs boson at CERN in Geneva is only the most recent of this theory's many triumphs. But, while they are both highly successful, these two structures leave a lot of important questions unanswered. They are also based on two different interpretations of space and time, and are therefore fundamentally incompatible. We have two descriptions but, as far as we know, we've only ever had one universe. What we need is a quantum theory of gravity. Approaches to formulating such a theory have primarily followed two paths. One leads to String Theory, which has for long been fashionable, and about which much has been written. But String Theory has become mired in problems. In this book, Jim Baggott describes : an approach which takes relativity as its starting point, and leads to a structure called Loop Quantum Gravity. Baggott tells the story through the careers and pioneering work of two of the theory's most prominent contributors, Lee Smolin and Carlo Rovelli. Combining clear discussions of both quantum theory and general relativity, this book offers one of the first efforts to explain the new quantum theory of space and time.--
Choose an application
Gravity --- Gravity. --- Geophysics --- Mechanics --- Pendulum
Choose an application
This self-contained monograph gives a thorough introduction to the theory of gravity which is used as the basis for developing applications in exploration and geodesy. In addition, a survey of gravity instrumentation is given, with emphasis on the theory of underlying these instruments. The book finishes with an exposition of forward modeling and inverston, again emphasizing fundamental principles.*Surveys gravity instrumentation with emphasis on the theory of why certain instrumentation is used*Presents thorough developments of the theory of gravity to aid in creating applications
Gravity. --- Gravity --- Measurement. --- Gravimetry --- Geophysics --- Mechanics --- Pendulum
Choose an application
This e-book attempts to answer one key question relating to gravity research: Is it possible to generate gravity-like fields by condensed-matter systems, in conditions accessible in a laboratory? General Relativity and lowest-order Quantum Gravity predict in this case very small emission rates, so these phenomena can only become relevant if some strong quantum effect occurs.
Gravity. --- Geophysics --- Mechanics --- Pendulum
Choose an application
Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent adva
Choose an application
Marine Gravity
Choose an application
This edited collection explores current approaches to understanding space, time, and gravity within a quantum-theoretical framework. In most such approaches, the three-dimensional space of ordinary perception and action is physically fundamental, but is rather emergent from underlying structures or dynamics that can, in general, be described in terms of information flows. Processes such as measurement and computation are, therefore, fundamental to the notion of physical space.
Gravity. --- Quantum theory. --- Physics.
Choose an application
Choose an application
Listing 1 - 10 of 327 | << page >> |
Sort by
|