Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Changes in sea surface roughness are usually associated with a change in the sea surface wind field. This interaction has been exploited to measure sea surface wind speed by scatterometry. A number of features on the sea surface associated with changes in roughness can be observed by synthetic aperture radar (SAR) because of the change in Bragg backscatter of the radar signal by damping of the resonant ocean capillary waves. With various radar frequencies, resolutions, and modes of polarization, sea surface features have been analyzed in numerous campaigns, bringing various datasets together, thus allowing for new insights into small-scale processes at a larger areal coverage. This Special Issue aims at investigating sea surface features detected by high spatial resolution radar systems, such as SAR.
dispersion curve filtering --- n/a --- Synthetic Aperture Radar --- RADARSAT Constellation Mission (RCM) --- marine X-band radar --- compact polarization (CP) --- cross-polarization --- proper orthogonal decomposition --- rain --- right circular horizontal polarization model --- support vector machines --- Sentinel-1 --- wind speed --- wave height --- hurricane --- ocean surface waves --- SMAP --- Copernicus --- synthetic aperture radar --- co-polarized phase difference --- synthetic aperture radar (SAR) --- oceans --- fetch- and duration-limited wave growth relationships --- Wake detection --- air-sea interaction --- phase-resolved wave fields --- wind --- SAR --- CoVe-Pol and CoHo-Pol models --- Baltic Sea --- wind retrieval --- ocean surface wind speed retrieval --- CMEMS --- detectability model --- right circular vertical polarization model --- hurricane internal dynamical process --- ocean winds --- polarimetry --- sea surface roughness --- eyewall replacement cycles --- GF-3 --- dual-polarization --- quad-polarized SAR --- typhoon/hurricane-generated wind waves --- coast and ocean observation --- radar --- geophysical model function (GMF) --- Doppler radar
Choose an application
The aim of this Printed Edition of Special Issue entitled "Recent Advancements in Radar Imaging and Sensing Technology” was to gather the latest research results in the area of modern radar technology using active and/or radar imaging sensing techniques in different applications, including both military use and a broad spectrum of civilian applications. As a result, the 19 papers that have been published highlighted a variety of topics related to modern radar imaging and microwave sensing technology. The sequence of articles included in the Printed Edition of Special Issue dealt with wide aspects of different applications of radar imaging and sensing technology in the area of topics including high-resolution radar imaging, novel Synthetic Apertura Radar (SAR) and Inverse SAR (ISAR) imaging techniques, passive radar imaging technology, modern civilian applications of using radar technology for sensing, multiply-input multiply-output (MIMO) SAR imaging, tomography imaging, among others.
microwave staring correlated imaging (MSCI) --- gain–phase errors --- strip --- self-calibration --- distributed MIMO radar --- target localization --- double-sided bistatic range (BR) --- microwave staring correlated imaging --- unsteady aerostat platform --- motion parameter fitting --- position error --- radar imaging --- synthetic aperture radar --- compressed sensing --- sparse reconstruction --- regularization --- passive forward scattering radar --- chirp rate estimation --- passive radar --- forward scattering radar --- radar measurements --- time-frequency analysis --- bistatic synthetic aperture radar (SAR) --- hyperbolic approximation --- phase compensation --- modified omega-K --- ground-penetrating radar --- noise suppression --- singular value decomposition --- Hankel matrix --- window length optimization --- synthetic aperture radar (SAR) --- high resolution wide swath (HRWS) --- azimuth multichannel reconstruction --- phase center adaptation --- false targets suppression --- damped exponential (DE) model --- inverse synthetic aperture radar (ISAR) --- radar signatures --- state–space approach (SSA) --- sparse representation --- polarimetric --- SAR tomography --- MIMO radar --- noise radar --- radar signal processing techniques --- analogue correlation --- modern radar applications --- delay line --- high pulse repetition frequency (HPRF) --- random frequency hopping (RFH) --- hypersonic aircraft --- SAR --- Synthetic Aperture Radar --- ASIFT --- Despeckling Filter --- Navigation --- Structure from Motion --- Iterative Closest Point --- radar tomography --- compressive sensing --- bistatic radar --- parameter-refined orthogonal matching pursuit (PROMP) --- orthogonal matching pursuit (OMP) --- k-space tomography --- narrowband radar --- off-grid compressive sensing --- slow-time k-space --- spatial frequency --- Doppler radar tomography --- k-space augmentation --- high-resolution narrowband radar --- multiband processing --- bandwidth stitching --- multi-scale representation learning (MSRL) --- pyramid pooling module (PPM) --- compact depth-wise separable convolution (CSeConv) --- convolution auto-encoder (CAE) --- object classification --- CARABAS II --- ground scene prediction --- image stack --- multi-pass --- SAR images --- moving targets --- inverse SAR (ISAR) --- motion compensation --- hybrid SAR/ISAR --- improved rank-one phase estimation (IROPE) --- Gaofen-3 (GF-3) --- assive radar --- time-frequency reassignment
Listing 1 - 2 of 2 |
Sort by
|