Listing 1 - 10 of 10 |
Sort by
|
Choose an application
Silicon technology today forms the basis of a world-wide, multi-billion dollar component industry. The reason for this expansion can be found not only in the physical properties of silicon but also in the unique properties of the silicon-silicon dioxide interface. However, silicon devices are still subject to undesired electrical phenomena called ""instabilities"". These are due mostly to the imperfect nature of the insulators used, to the not-so-perfect silicon-insulator interface and to the generation of defects and ionization phenomena caused by radiation. The problem of instabilities is
Integrated circuits -- Passivation. --- Integrated circuits. --- Silicon -- Electric properties. --- Silicon --- Integrated circuits --- Electric properties. --- Passivation.
Choose an application
Protein adsorption to solids, nanomaterials, and biological surfaces is of central interest in many fields, including biomedicine, bioanalytical chemistry, materials engineering, bio-nanotechnology, and basic biomolecular research. Although protein adsorption may sometimes occur with little consequence on molecular structure, interactions with surfaces frequently cause changes in local or global conformations and dynamics, perturbations to secondary structures or tertiary folds, eventually resulting in dramatically altered protein function. Importantly, surfaces may trigger protein misfolding and self-aggregation, or, conversely, promote protein structure formation. The use of nanoscale surfaces to remodel the conformational landscape and the aggregation pathways of amyloidogenic peptides and proteins has been proposed as a promising strategy against several severe human diseases. The rapid growth of applications and technological innovation which is based on or concerned with protein adsorption necessitates renewed efforts to provide molecular-level insights into adsorption-induced protein structural perturbations. In this Special Issue, we gathered the recent findings of experimental and computational investigations that contributed novel insights into protein adsorption with a focus on the structural and dynamic aspects of proteins.
sarcoplasmic reticulum Ca2+-ATPase --- Cu+-ATPase --- phospholipid flippase --- charge displacement --- concentration jump --- solid supported membrane --- conformational transition --- electrogenicity --- ion translocation --- phospholipid flipping --- protein-nanoparticle interactions --- protein NMR --- amyloidogenic proteins --- nitroxide paramagnetic perturbation --- spin label extrinsic probes --- Tempol --- β2-microglobulin --- protein conformation --- protein-surface association --- lipid membranes --- surface-immobilized protein --- EPR spectroscopy --- alpha-synuclein --- amyloid fibrils --- conformational flexibility --- protein adsorption --- protein aggregation --- nano-bio interface --- nanocomposite --- nanoparticles --- supramolecular assembly --- NMR spectroscopy --- gold nanoparticles --- PEGylation --- adsorption --- passivation --- n/a
Choose an application
This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.
fill factor loss analysis --- double-diode model --- PERC --- temperature dependence --- recombination current density --- parasitic resistance --- carrier selective contact --- rear emitter heterojunction --- passivation --- crystallinity --- thermal annealing --- excimer laser annealing --- amorphous hydrogenated silicon film --- metallization --- contact formation --- Ag/Al paste --- p+ emitter --- N-type bifacial solar cells --- silicon tandem heterojunction solar cell --- N-doped Cu2O absorber layer --- Al:ZnO (AZO) --- numerical electro-optical modeling --- scanning electron microscopy (SEM) --- atomic force microscopy (AFM) --- X-ray diffraction (XRD) --- spectroscopic ellipsometry (SE) --- Fourier-transform infrared (FTIR) spectroscopy --- degradation degree --- failure rate --- selective emitter --- surface morphology --- doping process --- solar cell
Choose an application
This book is a collection of scientific articles which brings research in Si nanodevices, device processing, and materials. The content is oriented to optoelectronics with a core in electronics and photonics. The issue of current technology developments in the nanodevices towards 3D integration and an emerging of the electronics and photonics as an ultimate goal in nanotechnology in the future is presented. The book contains a few review articles to update the knowledge in Si-based devices and followed by processing of advanced nano-scale transistors. Furthermore, material growth and manufacturing of several types of devices are presented. The subjects are carefully chosen to critically cover the scientific issues for scientists and doctoral students.
silicon --- yolk−shell structure --- anode --- lithium-ion batteries --- in-plane nanowire --- site-controlled --- epitaxial growth --- germanium --- nanowire-based quantum devices --- HfO2/Si0.7Ge0.3 gate stack --- ozone oxidation --- Si-cap --- interface state density --- passivation --- GOI --- photodetectors --- dark current --- responsivity --- prussian blue nanoparticles --- organotrialkoxysilane --- silica beads --- arsenite --- arsenate --- water decontamination --- vertical gate-all-around (vGAA) --- digital etch --- quasi-atomic-layer etching (q-ALE) --- selective wet etching --- HNO3 concentration --- doping effect --- vertical Gate-all-around (vGAA) --- p+-Ge0.8Si0.2/Ge stack --- dual-selective wet etching --- atomic layer etching (ALE) --- stacked SiGe/Si --- epitaxial grown --- Fin etching --- FinFET --- short-term potentiation (STP) --- long-term potentiation (LTP) --- charge-trap synaptic transistor --- band-to-band tunneling --- pattern recognition --- neural network --- neuromorphic system --- Si-MOS --- quantum dot --- spin qubits --- quantum computing --- GeSn --- CVD --- lasers --- detectors --- transistors --- III-V on Si --- heteroepitaxy --- threading dislocation densities (TDDs) --- anti-phase boundaries (APBs) --- selective epitaxial growth (SEG) --- n/a
Choose an application
Corrosion is a significant issue in many industrial fields. Among other strategies, coatings are by far the most important technology for corrosion protection of metallic surfaces. The Special Issue “Advanced Coatings for Corrosion Protection” has been launched as a means to present recent developments in any type of advanced coating for corrosion protection. This book compiles 15 contributions on metallic, inorganic, polymeric and nanoparticle enhanced coatings that provide corrosion protection as well as other functionalities.
fluorine free --- silanization --- superhydrophobic --- corrosion protection --- self-cleaning --- cathodic protection --- corrosion mitigation method --- potentiodynamic polarization test --- simulation --- pre-insulated pipeline --- zinc-rich coating --- cold galvanized coating --- durability --- magnesium --- microstructure --- coating --- corrosion --- polarization --- apatite --- scanning electrodeposition --- Ni-Fe-Co-P-CeO2 composite coating --- electrochemical corrosion behavior --- corrosion mechanism --- Zn-Al diffusion layer --- mechanical energy aided diffusion --- corrosion resistance --- electrochemistry --- aluminum foam --- electrodeposition --- compression test --- polyurea --- aging mechanism --- morphology --- chemical properties --- phase separation --- hydrogen bond --- magnesium alloy --- MAO coating --- corrosion behavior --- stratification phenomena --- marine environments --- aluminum alloy AlMg6 --- Al2O3 coating --- phase composition --- stress corrosion --- micro-arc oxidation --- polymer --- water hydraulic valve --- cavitation --- erosion --- coating selection --- molecular dynamics --- boride-based cermet --- laser cladding synthesis --- laser power --- hardness --- wear resistance --- MAX phase --- Ti2AlN --- PVD coating --- oxidation --- hydrogen permeation --- tungsten --- W–Cr–C coating --- carburization --- intergranular corrosion --- pitting corrosion --- stainless steel --- passivated --- electrochemical noise --- precipitation hardening --- metallic coatings --- anodizing layers --- passivation --- polymeric coatings --- laser cladding --- PVD --- superhydrophobic coatings --- composite coatings --- n/a --- W-Cr-C coating
Choose an application
Unit metallurgical operations processes are usually separated into three categories: 1) hydrometallurgy (leaching, mixing, neutralization, precipitation, cementation, and crystallization); 2) pyrometallurgy (roasting and smelting); and 3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). In hydrometallurgy, the aimed metal is first transferred from ores and concentrates to a solution using a selective dissolution (leaching or dry digestion) under an atmospheric pressure below 100 °C and under a high pressure (40-50 bar) and high temperature (below 270°C) in an autoclave. The purification of the obtained solution was performed using neutralization agents such as sodium hydroxide and calcium carbonate or more selective precipitation agents such as sodium carbonate and oxalic acid. The separation of metals is possible using a liquid/liquid process (solvent extraction in mixer-settler) and solid–liquid (filtration in filter-press under high pressure). Crystallization is the process by which a metallic compound is converted from a liquid into a solid crystalline state via a supersaturated solution. The final step is metal production using electrochemical methods (aqueous electrolysis for basic metals such as copper, zinc, silver, and molten salt electrolysis for rare earth elements and aluminum). Advanced processes, such as ultrasonic spray pyrolysis and microwave-assisted leaching, can be combined with reduction processes in order to produce metallic powders.
zirconium --- eudialyte --- hydrometallurgy --- basic sulfate precipitation --- macroporous polymer --- goethite --- factorial design --- desorption --- tailings reprocessing --- early stage cost estimation --- magnetic separation --- leaching --- flotation --- silica --- ultrasonic spray pyrolysis --- synthesis --- acid mine drainage --- red mud --- neutralization --- immobilization --- precipitation --- nitinol --- continuous vertical cast (CVC), NiTi rod --- atomic layer deposition --- corrosion properties --- potentiodynamic test --- electrochemical impedance spectroscopy --- rare earth elements --- recycling --- NdFeB --- magnet --- non-ferrous metals --- cavitation erosion --- optical microscopy --- electron microscopy --- atomic force microscopy --- aluminium --- thin-layer electrolysis --- molten salts --- halides --- capillary cell --- electrorefining --- non-commercial copper anode --- waste solution --- high content --- Ni --- Pb --- Sn --- Sb --- passivation --- anode slime --- pentlandite --- oxidation --- reaction mechanism --- phase analysis --- silver --- copper --- nanoparticles --- antibacterial --- MnO2 --- cobalt oxide Co3O4 --- perovskite materials --- oxygen reduction in alkaline media --- electrocatalyst --- Pt catalyst --- nanocomposite --- mixed oxides --- NiAl2O4 --- ZnAl2O4 --- electrocatalysis --- nanocatalyst --- noble metal nanoparticles --- leachate --- metal ions extraction --- selectivity --- Fe removal --- electrodeposition --- conductometry --- n/a
Choose an application
While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.
ohmic contact --- n/a --- MESFET --- optical band gap --- wide-bandgap semiconductor --- annealing temperature --- junction termination extension (JTE) --- channel length modulation --- silicon carbide (SiC) --- amorphous InGaZnO (a-IGZO) --- light output power --- GaN --- electrochromism --- large signal performance --- passivation layer --- 4H-SiC --- positive gate bias stress (PGBS) --- asymmetric power combining --- ultrahigh upper gate height --- high electron mobility transistors --- space application --- gallium nitride (GaN) --- phase balance --- edge termination --- distributed Bragg reflector --- cathode field plate (CFP) --- ammonothermal GaN --- anode field plate (AFP) --- W band --- GaN high electron mobility transistor (HEMT) --- 1T DRAM --- growth of GaN --- tungsten trioxide film --- thin-film transistor (TFT) --- micron-sized patterned sapphire substrate --- power added efficiency --- T-anode --- analytical model --- AlGaN/GaN --- harsh environment --- high-temperature operation --- amplitude balance --- buffer layer --- characteristic length --- Ku-band --- DIBL effect --- I–V kink effect --- flip-chip light-emitting diodes --- high electron mobility transistors (HEMTs) --- power amplifier --- sidewall GaN --- external quantum efficiency --- breakdown voltage (BV) --- threshold voltage (Vth) stability --- regrown contact --- AlGaN/GaN HEMT --- TCAD --- high electron mobility transistor (HEMT) --- I-V kink effect
Choose an application
Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)
polyhydroxibutyrate --- graphene oxide --- nanostructured films --- iridescence --- carbon nanotube --- corrosion --- biomaterial --- powders --- adsorption energy --- UPD --- plasma irradiation --- metallic nanoparticles --- STM --- nanospiral --- PA-PVD --- light trapping --- ruthenium --- aqueous dispersion --- DFT --- monomer synthesis --- ultrathin films --- galvanic displacement --- quantum confinement --- rod coating --- nanocomposite conductive polymers --- nanocrystalline cellulose --- phase transition performance --- La2O3 passivation layer --- interfacial energy --- lamination --- lysozyme --- nanofibrous membranes --- H2TPP --- poly(dimethylacrylamide) --- iron oxides --- water filtration --- hybrid deposition system --- Pt thin deposits --- reinforced --- wires --- self-assembly --- composite gel --- electron–phonon coupling --- barrier material --- PAS device --- hydrogel --- nanoscratch --- thin film --- polymeric matrix --- SEM --- silver --- sputtering --- optical transmittance --- wound dressing --- agarose --- XPEEM --- CERAMIS® --- highly oriented pyrolytic graphite --- FeO --- Raman scattering --- model system --- XPS --- photocatalysis --- photovoltaics --- atomic layer deposition --- chirality --- structural characterization --- polystyrene --- nanofiber --- 2D growth --- nanostructure --- biomedical --- VOCs selectivity --- silicon thin film --- electrodeposition --- electrocatalysis --- SLRR --- chemosensor --- CaxCoO2 --- spin coating --- nanocomposites --- Al2O3 --- metal-organic framework --- nanocoating of SiOx --- platinum --- symmetry --- PECVD --- thermal analysis --- first-principles calculation --- electrical properties --- biomimetic solvent sensors --- modulation structure --- nanofibers --- mercury vapors adsorbing layer --- hydrogenated amorphous carbon films --- phase transformation --- birefringence --- nanostructured back reflectors --- mesoporous --- silk sericin --- polymer nanoparticles --- LEEM --- SorpTest --- InAlN --- metamaterial --- microparticle deposition --- CdTe --- homogeneity --- luminous transmittance --- LDH --- hybrid material --- scaffolds --- MgO --- polystyrene sphere assisted lithography --- Ge surface engineering --- epitaxial growth --- AuNPs --- Kr physisorption --- plasma deposition --- ReB2/TaN multilayers --- vanadium dioxide --- FIB --- mask --- self-catalysed --- mesoporous graphene --- coating --- post-treatment --- Mg alloy --- photonic nanostructures --- ink --- deposition --- Mueller matrix --- electrospinning deposition --- polar semiconductors --- zinc oxide --- thin films --- Fe3O4 --- TiO2NPs --- mechanical flexibility --- hazardous organic solvents --- permeation --- interfacial model --- microscopy --- LEED --- electrical conductivity --- PVD
Choose an application
Reprints of Polymers Special Issue entitled "Polymer films for photovoltaic applications", which covers all fields related to polymer films for photovoltaic applications, but special attention will be given to the following aspects:- The synthesis and suitable modification of polymer structure, to obtain polymer thin films for PV devices;- The influence of film deposition (thermal vacuum evaporation (TVE), chemical vapor deposition (CVD), spin coating, spray, etc.) on the properties of polymer films;- The thermo-optical properties of polymer thin films and blends of polymer films, as potential parts of PV systems;- The influence of doping or protonation of polymer thin films and blend polymer films on their properties;- Polymer thin films as active layers in PV solar cells—correlation of chemical structure and PV properties;- BHJ solar cells with polymer blends films—the choice of blend film composition to obtain the best PV parameters.
azomethines --- supramolecular organization --- organic thin films --- polymer:fullerene blends --- organic photovoltaics --- memory device --- organic semiconductors --- poly-N-epoxy-propylcarbazole --- tera-cyanoquino-dimethane --- CsPbBr3 perovskite QDs --- amplified spontaneous emission (ASE) --- light amplification --- surface passivation --- photostability --- 3D helicoidal architecture --- fiber-based polymer composite --- impact resistance --- lightweight photovoltaics (PV) --- integrated PV rooftop --- luminescent solar concentrator --- polymer matrix --- organic fluorophore --- intramolecular charge transfer --- light harvesting --- dye --- organic solar cells --- ellipsometry --- ternary organic films --- morphology examination --- micro --- perovskite --- solar cell --- 3D printing --- fused deposition modeling --- artificially light-harvesting --- luminescent solar concentrators --- molecular alignability prediction --- redirecting diffuse light --- polymer:fullerene blend films --- iodine doping --- annealing effect --- absorption edge parameters --- exciton bandwidth --- structural changes --- BHJ solar cells --- polymer --- bulk heterojunction --- PEDOT:PSS --- PTB7:PC70BM --- PFN-Br --- SCAPS 1D --- encapsulants for PV modules --- lamination process --- EVA --- POE --- power conversion efficiency --- hybrid perovskite --- tandem structure --- photovoltaics --- commercialization --- molecular modeling --- stretching process --- polymers --- mechanical deformation --- density functional theory --- crosslinking kinetics --- dynamic mechanical analysis --- activation energy --- indoloquinoxaline --- low-cost polymer donor --- wide-bandgap polymer --- polymer solar cells --- dye-sensitized solar cells --- redox mediator --- solid polymer electrolytes --- succinonitrile --- electrical conductivity --- bulk-heterojunction solar cells --- perovskite solar cells --- thin layers
Choose an application
Significant progress has been made in nanophotonics and the use of nanostructured materials for optoelectronic devices, including light-emitting diodes (LEDs) and laser diodes, which have recently attracted considerable attention due to their unique geometry. Nanostructures in small dimensions, comprising nanowires, nanotubes, and nanoparticles, etc,. can be perfectly integrated into a variety of technological platforms, offering novel physical and chemical properties for high-performance, light-emitting devices. This Special Issue aims to present the most recent advances in the field of nanophotonics, which focuses on LEDs and laser diodes. We invite contributions of original research articles, as well as review articles that are aligned to the following topics that include, but are not limited to, thetheoretical calculation, synthesis, characterization, and application of such novel nanostructures for light-emitting devices. The application of nanostructured light-emitters in general lighting, imaging, and displays is also highly encouraged.
Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity --- n/a
Listing 1 - 10 of 10 |
Sort by
|