Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations.
Differential equations, Partial. --- Finite differences. --- Differences, Finite --- Finite difference method --- Partial differential equations --- Finite volume method. --- Mathematics. --- Partial differential equations. --- Numerical analysis. --- Numerical Analysis. --- Partial Differential Equations. --- Numerical analysis --- Differential equations, partial. --- Mathematical analysis --- Boundary value problems. --- Differential equations, Partial --- Numerical solutions.
Choose an application
This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations.
Mathematics --- Partial differential equations --- Differential equations --- Numerical analysis --- differentiaalvergelijkingen --- wiskunde --- numerieke analyse --- Boundary value problems. --- Differential equations, Partial --- Numerical solutions.
Choose an application
This volume is a collection of articles based on the plenary talks presented at the 2005 meeting in Santander of the Society for the Foundations of Computational Mathematics. The talks were given by some of the foremost world authorities in computational mathematics. The topics covered reflect the breadth of research within the area as well as the richness and fertility of interactions between seemingly unrelated branches of pure and applied mathematics. As a result this volume will be of interest to researchers in the field of computational mathematics and also to non-experts who wish to gain some insight into the state of the art in this active and significant field.
Listing 1 - 3 of 3 |
Sort by
|