Narrow your search

Library

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

FARO (1)

KU Leuven (1)

ULiège (1)

Vlaams Parlement (1)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2017 (1)

2005 (1)

Listing 1 - 2 of 2
Sort by
The dynamic bacterial genome
Author:
ISBN: 9780511541544 9780521821575 9780521129619 9780511345234 0511345232 051134452X 9780511344527 0511541546 0521821576 0521821576 1281108561 9781281108562 9786611108564 6611108564 1139130471 9781139130479 0511344899 9780511344893 0511344139 9780511344138 110714566X 0521129613 Year: 2005 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides an in-depth analysis of the mechanisms and biological consequences of genome rearrangements in bacteria. Genome rearrangements are a result of the actions of discrete genetic elements such as conjugative transposons, plasmids, phage, and non-conjugative transposons. Bacteria also contain systems to mediate genetic rearrangements such as the general recombination pathway and specialized endogenous recombination mechanisms. The biological effects of these rearrangements are far-reaching and impact on bacterial virulence, antibiotic resistance and the ability of bacteria to avoid the attentions of the host immune system (e.g. antigenic variation). These rearrangements also provide the raw material on which natural selection can act. Each chapter examines the mechanisms involved in genome rearrangements and the direct biological consequences of these events. This book is written by leading research workers and is an invaluable resource for graduate students and researchers in this field.


Book
Phage Therapy: Past; Present and Future
Authors: --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Historically, the first observation of a transmissible lytic agent that is specifically active against a bacterium (Bacillus anthracis) was by a Russian microbiologist Nikolay Gamaleya in 1898. At that time, however, it was too early to make a connection to another discovery made by Dmitri Ivanovsky in 1892 and Martinus Beijerinck in 1898 on a non-bacterial pathogen infecting tobacco plants. Thus the viral world was discovered in two of the three domains of life, and our current understanding is that viruses represent the most abundant biological entities on the planet. The potential of bacteriophages for infection treatment have been recognized after the discoveries by Frederick Twort and Felix d’Hérelle in 1915 and 1917. Subsequent phage therapy developments, however, have been overshadowed by the remarkable success of antibiotics in infection control and treatment, and phage therapy research and development persisted mostly in the former Soviet Union countries, Russia and Georgia, as well as in France and Poland. The dramatic rise of antibiotic resistance and especially of multi-drug resistance among human and animal bacterial pathogens, however, challenged the position of antibiotics as a single most important pillar for infection control and treatment. Thus there is a renewed interest in phage therapy as a possible additive/alternative therapy, especially for the infections that resist routine antibiotic treatment. The basis for the revival of phage therapy is affected by a number of issues that need to be resolved before it can enter the arena, which is traditionally reserved for antibiotics. Probably the most important is the regulatory issue: How should phage therapy be regulated? Similarly to drugs? Then the co-evolving nature of phage-bacterial host relationship will be a major hurdle for the production of consistent phage formulae. Or should we resort to the phage products such as lysins and the corresponding engineered versions in order to have accurate and consistent delivery doses? We still have very limited knowledge about the pharmacodynamics of phage therapy. More data, obtained in animal models, are necessary to evaluate the phage therapy efficiency compared, for example, to antibiotics. Another aspect is the safety of phage therapy. How do phages interact with the immune system and to what costs, or benefits? What are the risks, in the course of phage therapy, of transduction of undesirable properties such as virulence or antibiotic resistance genes? How frequent is the development of bacterial host resistance during phage therapy? Understanding these and many other aspects of phage therapy, basic and applied, is the main subject of this Topic.

Listing 1 - 2 of 2
Sort by