Listing 1 - 10 of 151 << page
of 16
>>
Sort by
Central nervous system plasticity and repair
Author:
ISBN: 0881670502 9780881670509 Year: 1985 Publisher: New York (N.Y.): Raven Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Précis de physiologie.. 3, Système nerveux central
Authors: ---
Year: 1970 Publisher: Paris: Masson,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Anatomie du système nerveux central
Authors: --- ---
ISBN: 9782704612093 2704612099 Year: 1986 Publisher: Paris: Expansion scientifique française,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Anatomie du système nerveux central
Authors: --- --- ---
ISBN: 9782704605781 2704605785 Year: 1974 Publisher: Paris: Expansion scientifique française,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Neuroanatomy : an illustrated colour text
Authors: --- ---
ISBN: 9780702054051 0702054054 Year: 2015 Publisher: Edinburgh: Churchill Livingstone,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Physiologie du système nerveux central
Author:
Year: 1965 Publisher: Paris: Masson,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Neuroanatomy : text and atlas
Authors: --- ---
ISBN: 9781259642487 1259642488 9781259642494 1259642496 Year: 2021 Publisher: New York: McGraw Hill,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Neuroanatomy plays a crucial role in the health science curriculum by preparing students to understand the anatomical basis of neurology and psychiatry. Imaging the human brain, in both the clinical and research setting, helps us to identify its basic structure and connections. And when the brain becomes damaged by disease or trauma, imaging localizes the extent of the injury. Functional imaging helps to identify the parts of the brain that become active during our thoughts and actions, and reveals brain regions where drugs act to produce their neurological and psychiatric effects. Complementary experimental approaches in animals-such as mapping neural connections, localizing particular neuroactive chemicals within different brain regions, and determining the effects of lesioning or inactivating a brain region-provide the neuroscientist with the tools to study the biological substrates of normal and disordered behavior. To interpret this wealth of clinical and basic science information requires a high level of neuroanatomical competence. Knowledge of human neuroanatomy is becoming increasing more important for procedures to treat central nervous system diseases. Therapeutic electrophysiological interventions target specific brain regions, such as deep brain stimulation (DBS) of the basal ganglia for Parkinson disease. Interventional neuroradiology is a chosen approach for treating many vascular abnormalities, such as repair of arterial aneurysms. Surgery to resect a portion of the temporal lobe is the treatment of choice to reduce the incidence of seizures for many patients with epilepsy. Neurosurgeons routinely use high-resolution imaging tools to characterize the functions and even the connections of regions surrounding tumors, to resect the tumor safely and minimize risk of loss of speech or motor function. Mathematical modeling of brain tissue characteristics based on high-resolution MRI is used to guide placement of surface electrodes for transcranial magnetic and direct current electric stimulation. Each of these innovative approaches clearly requires that the clinical team have a sufficient knowledge of functional neuroanatomy-that is, to have knowledge of brain functions and in which structures these functions are localized-to design and carry out these tasks. And this demand for knowledge of brain structure, function, and connectivity will only be more important in the future as higher-resolution imaging and more effective interventional approaches are developed to repair the damaged brain. Neuroanatomy helps to provide key insights into disease by providing a bridge between molecular and clinical neural science. We are learning the genetic and molecular bases for many neurological and psychiatric diseases, such as amyotrophic lateral sclerosis, Huntington disease, and schizophrenia. Localizing defective genes to particular brain regions, neural circuits, and even neuron classes helps to further our understanding of how pathological changes in brain structure alter brain function. And this knowledge, in turn, will hopefully lead to breakthroughs in treatments and even cures. An important goal of Neuroanatomy: Text and Atlas is to prepare the reader for interpreting the new wealth of human brain images-structural, functional, and connectivity-by developing an understanding of the anatomical localization of brain functions. To provide a workable focus, this book is largely restricted to the central nervous system. It takes a traditional approach to gaining neuroanatomical competence: Because the basic imaging picture is a two-dimensional slice through the brain (e.g., CT or MRI scan), the locations of structures and consideration of their functions are examined on two-dimensional myelin-stained sections through the human central nervous system. All chapters have been revised for the fifth edition of Neuroanatomy: Text and Atlas to reflect advances in neural science since the last edition, with many new full color illustrations. Designed as a self-study guide and resource for information on the structure and function of the human central nervous system, this book can serve as both text and atlas for an introductory laboratory course in human neuroanatomy."


Book
Neurodegeneration
Authors: ---
ISBN: 9780123619402 0123619408 Year: 1992 Publisher: London: Academic press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Drug action in the central nervous system
Author:
ISBN: 9780195093339 9780195093346 0195093348 019509333X Year: 1998 Publisher: New York: Oxford university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Rôle de la cadhérine atypique Celsr3 dans le développement cérébral chez la souris

Loading...
Export citation

Choose an application

Bookmark

Abstract

During brain development, neurons are generated in ventricular zones. Postmitotic neurons leave these zones and migrate through the tissue to reach their definitive location. After reaching their destination, they extend their axon and dendrites, then connexions settle progressively. The laboratory DENE is interested in genetic control of neuronal migration and differenciation, and in particular, the role of atypical cadherins Celsr1-3 in these processes. Celsr3 belongs to a family of 3 genes, orthologues to the Drosophila gene Flamingo. Wich is known to play a role in Planar Cell Polarity (PCP) as well as in the development of axons and dendrites. The Celsr3 gene has been inactivated by homologous recombination in ES cells. Mutant mice die within a few hours after birth, presumably of central hypoventilation. They have neither anterior commissure, nor internal capsule. On the other hand, other axonal bundles are normal, indicating that it is not a general axonal abnormality. Furthermore, the architectonic organization is intact. Interestingly, this phenotype is a phenocopy of that generated by mutation of Fzd3, one of the ten Frizzled genes in the mouse. In Drosophila, Frizzled and Flamingo/Starry night genes belong to “PCP” genes that control planar cell polarity as well as dendrite development. In order to study the role of Celsr3 and Fzd3 in neuronal maturation, we have cloned cDNAs, coding for Celsr3 and Fzd3 in expression vector, fused or not to EGFP. RT-PCR analysis of Celsr3 transcript allowed us to identify a micro-exon of 15 nucleotides, situtated between the 16th and the 17th exons, that is subject to differential splicing during brain development. Our constructs have been used in transicient transfection experiments in order to validate Celsr3 antibodies. Western blot confirmed the expect size of the Cels3 protein and IHC experiments on transfected HEK 293 demonstrated its membrane localisation. Lors du développement cérébral, les neurones sont engendrés dans des zones « ventriculaires ». Les neurones postmitotiques quittent ces zones et migrent à travers le tissu pour gagner leur localisation définitive. Arrivés à destinations, ils étendent leur axone et ramifient leurs dendrites, puis les connexions s’établissent progressivement. Le laboratoire DENE s’intéresse au contrôle génétique de la migration et de la différentiation neuronale et notamment au rôle des cadhérines atypiques de la famille Celsr1-3 dans ces processus. Celsr3 fait partie d’une famille de trois gènes qui sont les orthologues du gène Flamnigo/Starry night (Fmi ou Stan) chez la drosophile. Flamingo est connu pour jouer un rôle dans le développement des axones, des dendrites ainsi que dans la polarité planaire (PCP) des cellules épithéliales. Le gène Celsr3 a été inactivé chez la souris par recombinaison homologue en cellules ES par F. Tissir (DENE et I. Bar (FUNDP). Les souris mutantes meurent, endéans quelques heures après la naissance, incapables de respirer en raison d’anomalies de connexions centrales ; elles n’ont pas de commissure blanche antérieure, ni de capsule interne. En revanche, certains faisceaux sont normaux, démontrant qu’il ne s’agit pas d’une anomalie axonale généralisée. De plus, l’organisation architectonique est pratiquement intacte. L’intérêt de ce phénotype est encore accentué par l’observation d’un phénotype identique engendré par la mutation de Fzd3, un des dix Frezzled présents chez la souris. Chez la Drosophile, les gènes Frizzled et Flamingo/Starry night font partie des gènes de contrôle de la polarité tissulaire planaire et des mutations engendrent aussi des anomalies complexes, en particulier des voies axonales. Afin de mieux comprendre le rôle de Celsr3 et de Fzd3 dans la mutation neuronale, nous avons appliqué la stratégie suivante. Nous avons cloné les cDNA codant Celsr3 et Fzd3 dans des vecteurs d’expression eucaryote fusionnés ou non à l’EGFP. Au cours du clonage des différents cDNA, nous avons mis en évidence la présence d’un micro-exon de 15 nucléotides situé entre le 16ième et le 17ième exons, qui subit un épissage différentiel au cours du développement cérébral. Les constructions produites ont été utilisées dans des expériences de transfection transitoire afin de valider les anticorps anti-Celsr3, qui nous ont permis d’identifier la protéine dans des extraits tissulaires, par WB et IHC sur HEK293 transfectées ont confirmé sa localisation membranaire.

Listing 1 - 10 of 151 << page
of 16
>>
Sort by