Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Reporter cells: - Yeast Based Sensors by Mifumi Shimomura-Shimizu and Isao Karube - Mammalian Cell-Based Sensor Systems by Pratik Banerjee, Briana Franz, and Arun K. Bhunia - Fluorescent and Bioluminescent Cell-Based Sensors: Strategies for Their Preservation by Amol Date, Patrizia Pasini, and Sylvia Daunert - Electrochemical Cell-Based Sensors by Eliora Z. Ron and Judith Rishpon - Microbial Cell Arrays by Tal Elad, Jin Hyung Lee, Man Bock Gu, and Shimshon Belkin Devices: - Surface Functionalization for Protein and Cell Patterning by Pascal Colpo , Ana Ruiz , Laura Ceriotti , and François Rossi - Fiber-Optic Based Cell Sensors by Evgeni Eltzov and Robert S. Marks - Electronic Interfacing with Living Cells by James T. Fleming - On-Chip Detection of Cellular Activity by R. Almog , R. Daniel , S. Vernick , A. Ron , H. Ben-Yoav, and Y. Shacham-Diamand
Chemistry. --- Biotechnology. --- Cell Biology. --- Biological Techniques. --- Analytical Chemistry. --- Analytical biochemistry. --- Cytology. --- Cytology --- Chimie --- Biochimie analytique --- Biotechnologie --- Cytologie --- Research_xMethodology. --- Biosensors --- Cells
Choose an application
Nuclear Magnetic Resonance is a powerful tool, especially for the identification of 1 13 hitherto unknown organic compounds. H- and C-NMR spectroscopy is known and applied by virtually every synthetically working Organic Chemist. Con- quently, the factors governing the differences in chemical shift values, based on chemical environment, bonding, temperature, solvent, pH, etc. , are well understood, and specialty methods developed for almost every conceivable structural challenge. Proton and carbon NMR spectroscopy is part of most bachelors degree courses, with advanced methods integrated into masters degree and other graduate courses. In view of this universal knowledge about proton and carbon NMR spectr- copy within the chemical community, it is remarkable that heteronuclear NMR is still looked upon as something of a curiosity. Admittedly, most organic compounds contain only nitrogen, oxygen, and sulfur atoms, as well as the obligatory hydrogen and carbon atoms, elements that have an unfavourable isotope distribution when it comes to NMR spectroscopy. Each of these three elements has a dominant isotope: 14 16 32 16 32 N (99. 63% natural abundance), O (99. 76%), and S (95. 02%), with O, S, and 34 14 S (4. 21%) NMR silent. N has a nuclear moment I = 1 and a sizeable quadrupolar moment that makes the NMR signals usually very broad and dif cult to analyse.
Chemistry. --- Organic Chemistry. --- Organometallic Chemistry. --- Analytical Chemistry. --- Inorganic Chemistry. --- Polymer Sciences. --- Catalysis. --- Analytical biochemistry. --- Chemistry, inorganic. --- Chemistry, Organic. --- Polymers. --- Chimie --- Biochimie analytique --- Chimie organique --- Polymères --- Catalyse --- Electronic books. -- local. --- Nuclear magnetic resonance spectroscopy. --- Phosphorimetry. --- Biochemistry --- Analytical Chemistry --- Chemistry --- Physical Sciences & Mathematics --- Luminescence analysis --- Phosphorescence analysis --- Phosphorimetric analysis --- NMR spectroscopy --- Spectroscopy, NMR --- Spectroscopy, Nuclear magnetic resonance --- Analytical chemistry. --- Inorganic chemistry. --- Organic chemistry. --- Organometallic chemistry. --- Nuclear spectroscopy --- Knight shift --- Chemistry, Analytic --- Activation (Chemistry) --- Chemistry, Physical and theoretical --- Surface chemistry --- Polymere --- Polymeride --- Polymers and polymerization --- Macromolecules --- Inorganic chemistry --- Inorganic compounds --- Analytic biochemistry --- Organic chemistry --- Bioanalytic chemistry --- Bioanalytical chemistry --- Analytical chemistry --- Ressonància magnètica nuclear. --- Compostos orgànics --- Síntesi. --- Organometallic chemistry . --- Polymers . --- Analysis, Chemical --- Analytic chemistry --- Chemical analysis --- Chemistry, Organometallic --- Metallo-organic chemistry --- Chemistry, Organic --- Organometallic chemistry --- Polymers --- Catalysis
Choose an application
General biochemistry --- biochemie --- General biophysics --- biochemistry --- Analytical biochemistry --- Chemistry, Analytical --- Biochemistry --- Biochimie --- periodicals --- Periodicals --- Périodiques --- Biochemistry. --- Chemistry Techniques, Analytical. --- Biochimie analytique --- Analytical biochemistry. --- Biochemie. --- Analyse biologique --- Biological analysis --- #TS:WDEP --- 57 --- 577.1 --- Biological sciences in general --- Chemical bases of life. Biochemistry and bio-organic chemistry generally --- Analytical Chemistry. --- Chemistry. --- Chemistry --- Health Sciences --- Analytical Chemistry --- Physiology --- Biochemische Analyse --- Zeitschrift --- Online-Ressource --- Biochemie --- Chemische Analyse --- 577.1 Chemical bases of life. Biochemistry and bio-organic chemistry generally --- Périodiques --- EJBIOMO ELSEVIER-E EPUB-ALPHA-A EPUB-PER-FT --- periodicals. --- Analytic biochemistry --- Chemistry, Analytic --- Analyse --- Analytik --- Analytische Chemie --- Physikalische Analyse --- Bioassay --- Biologische Chemie --- Naturstoffchemie --- Physiologische Chemie --- Molekularbiologie --- Chemische Biologie --- Netzpublikation --- Online-Publikation --- Computerdatei im Fernzugriff --- Online-Dokument --- On-line-Dokument --- On-line-Publikation --- Elektronische Publikation --- Periodikum --- Zeitschriften --- Presse --- Fortlaufendes Sammelwerk --- Bioanalytische Chemie --- Bioanalytik --- Analytische Biochemie --- Analytical Chemistry Methods --- Analytical Chemistry Techniques --- Analytical Chemistry Method --- Analytical Chemistry Technique --- Chemistry Method, Analytical --- Chemistry Methods, Analytical --- Chemistry Technique, Analytical --- Method, Analytical Chemistry --- Methods, Analytical Chemistry --- Technique, Analytical Chemistry --- Techniques, Analytical Chemistry --- Chemie --- Bioanalytic chemistry --- Bioanalytical chemistry --- Analytical chemistry --- Chemistry, Analytic. --- Analytic Chemistry --- Chemistry Techniques, Analytical --- Biochimie. --- biochemistry. --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Biology --- Medical sciences --- Composition
Choose an application
Speci?c binding of a ligand to a receptor is a key step in a variety of biol- ical processes, such as immune reactions, enzyme cascades, or intracellular transport processes. The ligand-receptor terminology implies that the rec- tor molecule is signi?cantly larger than the ligand, and the term bioactive conformation usually characterizes the conformation of a ligand when it is bound to a receptor. In a more general sense, bioactive conformation applies toanymoleculeinabiologicallyrelevantboundstateregardlessofsizecons- erations. Mostofthecontributions tothisbookaddressligandsthat aremuch smaller than their receptors. X-ray crystallography and high resolution NMR spectroscopy are the two main experimental techniques used to study bioactive conformations. The- fore,the twovolumes ofthisbookcover approachesthat use either ofthetwo techniques, or a combination thereof. The combination of X-ray crystallog- phy and NMR spectroscopy is particularly useful when a crystal structure of areceptorprotein,butnotofthereceptorprotein-ligandcomplex,isavailable. Anumberofexperimentaltechniquestoanalyzethebioactiveconformationof aligandwithNMRarebasedontheobservationoftheresonancesignalsofthe free ligand that is in exchange with the bound ligand. Several chapters focus onsuchapproachesthat rangefromclassical transferredNOEexperiments, totransferred dipolar couplings,toSTD (saturation transfer difference) NMR techniques. Incaseswhere tightbinding inthesub-nanomolar rangeprevents the analysis of the bioactive conformation via free ligand signals, the ligand- proteincomplexhas tobeanalyzed withproteinNMR-based techniques orby crystallography.Sincethisareahasbeenthesubjectofmanyreviewsandmo- graphsitwill not be covered here in particular detail. As a unifying theme, all contributionstargetthequestionofhowmolecular recognitionofbiologically active molecules is achieved on the atomic scale. Depending on the research topic the results from these studies have a strong impact not only in basic research but also in several ?elds of application ranging frompharmaceutical applications tothe use of biomolecules as, for example, cryoprotectants.
Chemistry. --- Organic Chemistry. --- Biochemistry, general. --- Physical Chemistry. --- Medicinal Chemistry. --- Analytical Chemistry. --- Analytical biochemistry. --- Chemistry, Organic. --- Physical organic chemistry --- Biochemistry. --- Chimie --- Biochimie analytique --- Chimie organique --- Chimie organique physique --- Biochimie --- Conformational analysis --- Bioactive compounds --- Ligand binding (Biochemistry) --- Molecular Conformation --- Binding Sites --- Ligands --- Nuclear Magnetic Resonance, Biomolecular --- Protein Binding --- Analysis --- Chemistry --- Biochemistry --- Physical Sciences & Mathematics --- 577.354.3 --- Chemoreception --- 577.354.3 Chemoreception --- Conformational analysis. --- Analysis. --- Binding, Ligand (Biochemistry) --- Analysis, Conformational --- Biologically active compounds --- Compounds, Bioactive --- Compounds, Biologically active --- Compounds, Physiologically active --- Physiologically active compounds --- Analytical chemistry. --- Organic chemistry. --- Physical chemistry. --- Medicinal chemistry. --- Dye-ligand affinity chromatography --- Radioligand assay --- Molecular rotation --- Chemicals --- Chemistry, Physical organic. --- Analytic biochemistry --- Chemistry, Analytic --- Chemistry, Physical organic --- Chemistry, Organic --- Chemistry, Physical and theoretical --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Biology --- Medical sciences --- Organic chemistry --- Composition --- Bioanalytic chemistry --- Bioanalytical chemistry --- Analytical chemistry --- Analysis, Chemical --- Analytic chemistry --- Chemical analysis --- Chemistry, Medical and pharmaceutical --- Chemistry, Pharmaceutical --- Drug chemistry --- Drugs --- Medical chemistry --- Medicinal chemistry --- Pharmacochemistry --- Chemistry, Theoretical --- Physical chemistry --- Theoretical chemistry --- Bioactive compounds - Analysis
Choose an application
see table of contents.
Chemistry. --- Polymer Sciences. --- Analytical Chemistry. --- Nanotechnology. --- Surfaces and Interfaces, Thin Films. --- Organic Chemistry. --- Analytical biochemistry. --- Chemistry, Organic. --- Polymers. --- Surfaces (Physics). --- Chimie --- Biochimie analytique --- Chimie organique --- Polymères --- Nanotechnologie --- Surfaces (Physique) --- Biomolecules --- Nanostructures --- Molecular biology --- Scanning tunneling microscopy --- Atomic force microscopy --- Analysis --- Research --- Molecular Biology --- Nanotechnology --- Microscopy, Scanning Probe --- Microscopy --- Genetics --- Biochemistry --- Natural Science Disciplines --- Miniaturization --- Manufactured Materials --- Technology --- Biological Science Disciplines --- Investigative Techniques --- Disciplines and Occupations --- Diagnostic Imaging --- Chemistry --- Biology --- Technology, Industry, and Agriculture --- Analytical, Diagnostic and Therapeutic Techniques and Equipment --- Technology, Industry, Agriculture --- Diagnostic Techniques and Procedures --- Diagnosis --- Organic Chemistry --- Health & Biological Sciences --- Physical Sciences & Mathematics --- Atomic force microscopy. --- Scanning tunneling microscopy. --- Analysis. --- Research. --- STM (Microscopy) --- AFM (Microscopy) --- Analytical chemistry. --- Organic chemistry. --- Materials --- Thin films. --- Surfaces. --- Scanning probe microscopy --- Nanoscience --- Physics --- Molecular technology --- Nanoscale technology --- High technology --- Organic chemistry --- Surface chemistry --- Surfaces (Technology) --- Analytic biochemistry --- Chemistry, Analytic --- Polymere --- Polymeride --- Polymers and polymerization --- Macromolecules --- Bioanalytic chemistry --- Bioanalytical chemistry --- Analytical chemistry --- Polymers . --- Materials—Surfaces. --- Films, Thin --- Solid film --- Solid state electronics --- Solids --- Coatings --- Thick films --- Analysis, Chemical --- Analytic chemistry --- Chemical analysis --- Biomolecules - Analysis --- Nanostructures - Analysis --- Molecular biology - Research
Listing 1 - 5 of 5 |
Sort by
|