Narrow your search

Library

FARO (10)

KU Leuven (10)

LUCA School of Arts (10)

Odisee (10)

Thomas More Kempen (10)

Thomas More Mechelen (10)

UCLL (10)

VIVES (10)

Vlaams Parlement (10)

UGent (4)

More...

Resource type

book (10)


Language

English (9)

German (1)


Year
From To Submit

2022 (2)

2021 (4)

2020 (2)

2019 (1)

2016 (1)

Listing 1 - 10 of 10
Sort by

Book
Modellierung der Stoffübertragung beim Niederdruckcarbonitrieren mit Ammoniak und Acetylen
Author:
ISBN: 1000057840 3731505681 Year: 2016 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

A mathematical model has been developed for the description of the transport process for low-pressure carbonitriding with ammonia and acetylene. As an example the case hardening steel 18CrNi8 was used. It can be shown that the concentration profiles of carbon and nitrogen as well as the ammonia exhaust gas concentration are described well. Based on the modelling, first simulation runs could be carried out for further optimization of the heat treatment process.


Book
Advances in Chemical Vapor Deposition
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pursuing a scalable production methodology for materials and advancing it from the laboratory to industry is beneficial to novel daily-life applications. From this perspective, chemical vapor deposition (CVD) offers a compromise between efficiency, controllability, tunability and excellent run-to-run repeatability in the coverage of monolayers on substrates. Hence, CVD meets all of the requirements for industrialization in basically all areas, including polymer coatings, metals, water-filtration systems, solar cells and so on. The Special Issue “Advances in Chemical Vapor Deposition” is dedicated to providing an overview of the latest experimental findings and identifying the growth parameters and characteristics of perovskites, TiO2, Al2O3, VO2 and V2O5 with desired qualities for potentially useful devices.


Book
Leaching Kinetics of Valuable Metals
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Leaching is a primary extractive operation in hydrometallurgical processing, by which a metal of interest is transferred from naturally occurring minerals into an aqueous solution. In essence, it involves the selective dissolution of valuable minerals, where the ore, concentrate, or matte is brought into contact with an active chemical solution known as a leach solution. Currently, the hydrometallurgical processes have a great number of applications, not only in the mining sector—in particular, for the recovery of precious metals—but also in the environmental sector, for the recovery of toxic metals from wastes of various types, and their reuse as valuable metals, after purification. Therefore, there is an increasing need to develop novel solutions, to implement environmentally sustainable practices in the recovery of these valuable and precious metals, with particular reference to critical metals; those included in materials that are indispensable to modern life and for which an exponential increase in consumption is already a reality, or will be in a short-term perspective. For publication in this Special Issue, consideration has been given to articles that contribute to the optimization of the kinetic conditions of innovative hydrometallurgical processes—economic and of low environmental impact—applied to the recovery of valuable and critical metals.


Book
New Advances of Cavitation Instabilities
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cavitation refers to the formation of vapor cavities in a liquid when the local pressure becomes lower than the saturation pressure. In many hydraulic applications, cavitation is considered as a non-desirable phenomenon, as far as it may cause performance degradation, vibration problems, enhance broad-band noise-emission, and eventually trigger erosion. In this Special Issue, recent findings about cavitation instabilities are reported. More precisely, the dynamics of cavitation sheets are explored at very low Reynolds numbers in laminar flows, and in microscale applications. Both experimental and numerical approach are used. For the latter, original methods are assessed, such as smooth particles hydrodynamics or detached eddy simulations coupled to a compressible approach.


Book
Humidity Sensors : Advances in Reliability, Calibration and Application
Authors: --- ---
ISBN: 3039211234 3039211226 9783039211234 Year: 2019 Publisher: Basel, Switzerland : MDPI,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Humidity detection has deep significance for the scientific research surrounding medical care and human performance, and the industrial development of agriculture, geography and automated instruments. This special issue aims to showcase some of the advancements in humidity sensor design and calibration, and its applications. The selected papers cover a variety of humidity sensor-related topics including material science, chemistry and industrial engineering. Through dedicated contributions from peer reviewers and the editorial team, this book aims to offers reader some insight into the field of humidity sensor development and use.


Book
Modelling and Management of Irrigation System
Authors: --- ---
ISBN: 3039287915 3039287907 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irrigation is becoming an activity of precision, where combining information collected from various sources is necessary to optimally manage resources. New management strategies, such as big data techniques, sensors, artificial intelligence, unmanned aerial vehicles (UAV), and new technologies in general, are becoming more relevant every day. As such, modeling techniques, both at the water distribution network and the farm levels, will be essential to gather information from various sources and offer useful recommendations for decision-making processes. In this book, 10 high quality papers were selected that cover a wide range of issues that are relevant to the different aspects related to irrigation management: water source and distribution network, plot irrigation systems, and crop water management.


Book
Technologies of Coatings and Surface Hardening for Tool Industry
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovative coating and surface hardening technologies developed in recent years allow us to obtain practically any physical–mechanical or crystal–chemical complex properties of the metalworking tool surface layer. Today, the scientific approach to improving the operational characteristics of the tool surface layers produced from traditional tools industrial materials is a highly costly and long-lasting process. Different technological techniques, such as coatings (physical and chemical methods), surface hardening and alloying (chemical-thermal treatment, implantation), a combination of the listed methods, and other solutions are used for this. This edition aims to provide a review of the current state of the research and developments in the field of coatings and surface hardening technologies for cutting and die tools that can ensure a substantial increase of the work resource and reliability of the tool, an increase in productivity of machining, accuracy, and quality of the machined products, reduction in the material capacity of the production, and other important manufacturing factors. In doing so, the main emphasis should be on the results of the engineering works that have had a prosperous approbation in a laboratory or real manufacturing conditions.

Keywords

hierarchical structure --- multilayer PVD coating --- stochastic process --- convection and diffusion --- reactive magnetron sputtering --- argon --- nitrogen and ethylene --- TaSi2 --- Ta3B4 and ZrB2 --- SHS and hot pressing --- composition and structure --- hardness and elastic modulus --- friction coefficient and wear resistance --- oxidation resistance --- diamond-like coatings --- nitride sublayer --- index of plasticity --- adhesive bond strength --- end mills --- hard alloy --- wear resistance --- milling of aluminum alloys --- milling of structural steels --- surface quality --- modeling --- carbon flux --- low-pressure vacuum carburizing --- medium-high alloy steel --- nanolayered PVD coating --- microdroplets --- crack formation --- tool wear --- nanolayered coating --- microparticles --- monocrystalline --- high-pressure, high-temperature (HPHT) diamond --- chemical vapor deposition (CVD) diamond --- high-fluence ion irradiation --- Ar+ --- C+ --- SEM --- AFM --- Raman spectra --- electrical conductivity --- AlCr-based --- CrAl-based --- (AlCrX)N --- (Al1−xCrx)2O3 --- arc --- HiPIMS --- nanolayers --- nanocomposite --- structure --- properties --- roughness --- coatings --- finish turning --- PCBN --- tempered steel --- micro cutters --- cutting edges --- wear-resistance --- coating deposition --- adhesion --- plasma --- ions --- charge exchange collisions --- fast gas atoms --- etching --- sharpening --- diamond-like carbon coating --- high-speed milling --- nickel alloy --- SiAlON --- spark plasma sintering --- adaptive coating --- adaptive material --- composite powder HSS --- cutting tool --- secondary structures --- surface layer --- thermal-force loads


Book
Frontiers in Ultra-Precision Machining
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies.

Keywords

fused silica --- small-scale damage --- magnetorheological removing method --- combined repairing process --- evolution law --- diamond grinding --- single crystal silicon --- subsurface damage --- crystal orientation --- spherical shell --- thin-walled part --- wall-thickness --- benchmark coincidence --- data processing --- ultra-precision machining --- computer-controlled optical surfacing --- dwell time algorithm --- removal function --- elementary approximation --- atmospheric pressure plasma jet --- continuous phase plate --- surface topography --- high accuracy and efficiency --- polar microstructures --- optimization --- machining parameters --- cutting strategy --- flexible grinding --- shear thickening fluid --- cluster effect --- high-shear low-pressure --- aluminum --- ion beam sputtering --- morphology evolution --- molecular dynamics --- electrochemical discharge machining (ECDM) --- material removal rate (MRR) --- electrode wear ratio (EWR) --- overcut (OC) --- electrical properties --- tool material --- diamond tool --- single-point diamond turning --- lubricant --- ferrous metal --- electrorheological polishing --- polishing tool --- roughness --- integrated electrode --- Nano-ZrO2 ceramics --- ultra-precision grinding --- surface residual material --- surface quality --- three-dimensional surface roughness --- reversal method --- eccentricity --- piezoelectric actuator --- flange --- dynamic modeling --- surface characterization --- cutting forces --- tool servo diamond cutting --- data-dependent systems --- surface topography variation --- microstructured surfaces --- microlens array --- three-dimensional elliptical vibration cutting --- piezoelectric hysteresis --- Bouc–Wen model --- flower pollination algorithm --- dynamic switching probability strategy --- parameter identification --- atom probe tomography (APT) --- single-wedge --- lift-out --- focused ion beam (FIB) --- Al/Ni multilayers --- vibration-assisted electrochemical machining (ECM) --- blisk --- narrow channel --- high aspect ratio --- multi-physics coupling simulation --- machining stability --- n/a --- Bouc-Wen model


Book
Advances in Plasma Processes for Polymers
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization.

Keywords

polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film


Book
Development of Unconventional Reservoirs
Author:
ISBN: 3039285815 3039285807 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional reservoirs. As the name “unconventional” implies, different and challenging approaches are required to characterize and develop these resources. This Special Issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane.

Keywords

horizontal well --- shale gas --- shock loads --- pseudo-steady-state non-equilibrium sorption --- unsteady state non-equilibrium sorption --- porosity–permeability --- fractured-vuggy reservoirs --- flow channel --- pressure derivative --- total organic carbon (TOC) --- CO2 huff-n-puff --- flow behavior --- unconventional reservoirs --- semi-analytical model --- gravel pack --- optimization measures --- fractures --- lab tests under reservoir condition --- dual-porosity system --- unconventional --- gravity differentiation --- MICP --- perforation safety --- fracture penetration extent --- organic-rich shale --- stress-dependent permeability --- equilibrium sorption --- helium porosimetry --- numerical model --- original gas in-place --- shale alteration --- injection and production pattern --- adsorption and desorption isotherms --- low-pressure gas adsorption --- initial water saturation --- drilling fluid --- sorption hysteresis --- coalbed methane --- gas content --- capillary number --- reorientation fractures --- water flooding effect --- organic pores --- tight reservoir --- condensate recovery --- Langmuir pressure --- Klinkenberg slippage theory --- limestone and calcareous mudstone interbedding --- petrophysics --- tight gas sand --- numerical analysis --- northern Guizhou --- wettability --- peak pressure --- sand control --- water imbibition --- clay bound water --- carbon dioxide sequestration --- adsorption capacity --- gas compressibility factors --- convolutional neural network --- multi-stage fracturing horizontal wells --- fractured tight reservoir --- physical model --- tight gas reservoirs --- automatic classification --- NMR --- catalytic oxidation characteristics --- micro-CT image --- wellbore stability --- gas adsorption and desorption --- gas shale --- medium volatile bituminous coal --- hydraulic flow units --- GEM® --- petrophysical properties --- compositional 3D --- rock-water-CO2 interaction --- source-mixed gas --- residual gas distribution --- oxidation reaction pathway --- coal rank --- oil migration --- clay content --- perforated string --- TOC recovery --- Computer Modelling Group (CMG) --- capillary trapping --- pore size distribution --- adsorption --- tight reservoirs --- well interference --- gradation optimization --- shale gas condensate reservoir --- Niutitang formation --- pulse decay test --- well testing --- Langmuir model --- methane adsorption capacity --- pore structure --- and tight sand gas) --- ultra-deep well --- deepwater well --- orthogonal test --- high pressure and low flowrate --- theoretical model --- safety analysis --- transient pressure --- catalyst-activated low temperature oxidation --- reservoir simulation --- Langmuir volume --- air flooding --- petrography --- total organic carbon --- electrical resistivity --- diffusion coefficient --- equation of state --- porosity --- zeta potential --- gas permeability measurement --- co-exploitation --- nuclear magnetic resonance --- Changqing tight oil --- visual experiment --- tight oil reservoirs --- caprock integrity --- coal measure gases (coalbed gas --- NIST-Refprop

Listing 1 - 10 of 10
Sort by