Narrow your search

Library

FARO (8)

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

VIVES (8)

Vlaams Parlement (8)

UGent (2)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2022 (2)

2021 (3)

2020 (1)

2019 (1)

2015 (1)

Listing 1 - 8 of 8
Sort by

Book
The dynamics of finite-size settling particles
Author:
ISBN: 1000044723 3731503077 Year: 2015 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contributes to the fundamental understanding of the physical mechanisms that take place in pseudo turbulent particulate flows. In the present work we have considered the sedimentation of large numbers of spherical rigid particles in an initially quiescent flow field. We have performed direct numerical simulations employing an immersed boundary method for the representation of the fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial distribution. It is found that the particles are preferentially located in regions with downward fluid motion. The particles inside clusters experience larger settling velocities than the average. The flow in all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced flow field is further found to be highly anisotropic with dominant vertical components. The results indicate that, in the present flow configurations, the collective and mobility effects play significant role for the particle and fluid motion.


Book
Fluid Mechanics of Plankton
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book.


Book
The Numerical Simulation of Fluid Flow
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book collects the accepted contributions to the Special Issue "The Numerical Simulation of Fluid Flow" in the Energies journal of MDPI. It is focused more on practical applications of numerical codes than in its development. It covers a wide variety of topics, from aeroacoustics to aerodynamics and flow-particles interaction.


Book
Micro/Nano Devices for Blood Analysis
Authors: --- ---
ISBN: 3039218255 3039218247 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.


Book
Numerical Heat Transfer and Fluid Flow 2021
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on experiments, modellings, and simulations of heat transfer and fluid flow. Flowing media comprise single- or two-phase fluids that can be both compressible and incompressible. The reprint presents unique experiments and solutions to problems of scientific and industrial relevance in the transportation of natural resources, technical devices, industrial processes, etc. In the presented works, the formulated physical and mathematical models together with their boundary and initial conditions and numerical computation methods for constitutive equations lead to solutions for selected examples in engineering.


Book
Modelling of Harbour and Coastal Structures
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

As the most heavily populated areas in the world, coastal zones host the majority and some of the most important human settlements, infrastructures and economic activities. Harbour and coastal structures are essential to the above, facilitating the transport of people and goods through ports, and protecting low-lying areas against flooding and erosion. While these structures were previously based on relatively rigid concepts about service life, at present, the design—or the upgrading—of these structures should effectively proof them against future pressures, enhancing their resilience and long-term sustainability. This Special Issue brings together a versatile collection of articles on the modelling of harbour and coastal structures, covering a wide array of topics on the design of such structures through a study of their interactions with waves and coastal morphology, as well as their role in coastal protection and harbour design in present and future climates.

Keywords

beach morphology --- beach nourishment performance --- sustainable development --- General Shoreline beach model --- United Arab Emirates --- Saadiyat Island --- breakwater --- extreme learning machine --- stability assessment --- machine learning --- column-stabilized fish cage --- horizontal wave force --- least squares method --- hydrodynamic coefficient --- vertical breakwater --- reliability analysis --- overall stability --- sliding failure --- overturning failure --- bearing capacity analysis --- breakwater’s foundation failure --- rubble-mound --- zero-freeboard --- porous-media --- immersed-boundary --- level-set --- Smagorinsky subgrid scale model --- wave reflection --- wave transmission --- wave overtopping --- wave setup --- Nowshahr port --- field measurements --- numerical simulation --- wave --- current --- sediment transport --- rubble mound breakwaters --- historical review --- damage measurement --- damage characterization --- damage --- damage model --- damage progression --- input reduction --- wave schematization --- pick-up rate --- MIKE21 CM FM --- long-term morphological modelling --- numerical model --- OpenFOAM --- scour --- vertical breakwaters --- mortar-grouted riprap revetment --- full-scale hydraulic tests --- design of revetments --- Balearic Islands --- Boumerdès --- current speed --- harbor --- tsunami --- model uncertainty --- reliability --- pile settlement --- piles in granular soil --- base resistance --- skin friction --- t-z curves --- climate change --- coastal flooding --- coastal structures --- numerical modelling --- Boussinesq equations --- n/a --- breakwater's foundation failure --- Boumerdès


Book
Recent Numerical Advances in Fluid Mechanics
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.

Keywords

fluid–structure interaction --- monolithic method --- Updated Lagrangian --- Arbitrary Lagrangian Eulerian --- computational aerodynamics --- Kutta condition --- compressible flow --- stream function --- non-linear Schrödinger equation --- cubic B-spline basis functions --- Galerkin method --- pressure tunnel --- hydraulic fracturing --- transient flow --- finite element method (FEM) --- Abaqus Finite Element Analysis (FEA) --- computational fluid dynamics --- RANS closures --- uncertainty quantification --- Reynolds stress tensor --- backward-facing step --- OpenFOAM --- large eddy simulations (LES) --- shock capturing --- adaptive filter --- explicit filtering --- jet --- proper orthogonal decomposition --- coherent structures --- turbulence --- vector flow fields --- PIV --- buildings --- urban area --- pollution dispersion --- Large Eddy Simulation (LES) --- multiple drop impact --- computational fluid dynamics (CFD) simulation --- volume-of-fluid --- crater dimensions --- vorticity --- transient incompressible Navier-Stokes --- meshless point collocation method --- stream function-vorticity formulation --- strong form --- explicit time integration --- wall layer model --- LES --- separated flow --- body fitted --- immersed boundary --- reduced order modeling --- Kolmogorov n-width --- Galerkin projection --- turbulent flows --- reduced order model --- closure model --- variational multiscale method --- deep residual neural network --- internal combustion engines --- liquid-cooling system --- heat transfer --- n/a --- fluid-structure interaction --- non-linear Schrödinger equation


Book
CFD Simulations of Marine Hydrodynamics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

CFD is an emerging area and is gaining popularity due to the availability of ever-increasing computational power. If used accurately, CFD methods may overcome the limitations of experimental and other numerical methods, in some respects. This Special Issue focuses on Computational Fluid Dynamics (CFD) Simulations of Marine Hydrodynamics with a specific focus on the applications of naval architecture and ocean engineering, and it comprises 24 original articles that advance state-of-the-art CFD applications in marine hydrodynamics and/or review the progress and future directions of research in this field. The published articles cover a wide range of subjects relevant to naval architecture and ocean engineering, including but not limited to; ship resistance and propulsion, seakeeping and maneuverability, hydrodynamics of marine renewable energy devices, validation and verification of computational fluid dynamics (CFD), EFD/CFD combined methods, fouling/coating hydrodynamics.

Keywords

CFD --- shallow water --- restricted water --- KCS --- spectral analysis of free surfaces --- air resistance --- container ship --- superstructure --- numerical simulation --- trim --- dispersion --- pH --- turbulent Schmidt number --- scrubber --- wash water --- ship hydrodynamics --- ship motions --- green water on deck --- slamming --- cross wave --- near free surface --- unsteady cavitation dynamics --- NACA66 hydrofoil --- dynamic mode decomposition --- wave energy --- computational fluid dynamics --- identification --- viscous damping --- URANS --- computational fluid dynamic --- experimental fluid dynamic --- sailboat --- hull --- towing tank test --- numerical ventilation --- overset --- volume of fluid (VOF), hydrodynamic --- Polito Sailing Team (PST) --- offshore crane --- OpenFOAM --- wave-payload interaction --- NWT --- overset mesh --- planing hull --- seakeeping --- vertical motions --- mesh deformation --- computational fluid dynamics (CFD) --- radial basis function (RBF) method --- inverse distance weighted (IDW) method --- hull form optimization --- Computational Fluid Dynamics --- Verification and Validation --- nearfield wake pattern --- longitudinal wake profile --- distributed propulsion --- draft --- parallel-sided --- NACA --- CAD --- systematic investigation --- low Reynolds number --- sailing --- centerboard --- Bézier curves --- gamma transition criterion --- restricted channel --- resistance correction --- biofouling --- ship performance --- oil tanker --- bulk carrier --- immersed boundary method --- air–water two-phase flows --- VoF method --- finite volume method --- interaction effect --- wind drag --- aerodynamic --- Reynolds Average Navier–Stokes (RANS) --- rudder–propeller interactions --- validations and verification --- actuator disk theory --- rudder sectional forces --- marginal ice zone --- sea ice --- wave --- six degree of freedom (6DoF) motion --- planing craft --- twin side-hulls --- porpoising instability --- model tests --- inhibition mechanism --- optimal location --- ship resistance --- form factor --- best practice guidelines --- numerical friction line --- combined CFD/EFD methods --- next generation subsea production system --- Immersed Buoyant Platform --- hydrodynamic characteristics --- ultra-deep sea --- swallowing capacity --- duct flow --- ducted turbine --- roughness effect --- Wigley hull --- heterogeneous hull roughness

Listing 1 - 8 of 8
Sort by