Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

FARO (1)

UCLouvain (1)

Vlaams Parlement (1)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (1)

2007 (1)

Listing 1 - 2 of 2
Sort by

Book
Polynomials: Special Polynomials and Number-Theoretical Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polynomials play a crucial role in many areas of mathematics including algebra, analysis, number theory, and probability theory. They also appear in physics, chemistry, and economics. Especially extensively studied are certain infinite families of polynomials. Here, we only mention some examples: Bernoulli, Euler, Gegenbauer, trigonometric, and orthogonal polynomials and their generalizations. There are several approaches to these classical mathematical objects. This Special Issue presents nine high quality research papers by leading researchers in this field. I hope the reading of this work will be useful for the new generation of mathematicians and for experienced researchers as well

Discrete Orthogonal Polynomials. (AM-164)
Authors: --- ---
ISBN: 9780691127330 0691127336 9780691127347 0691127344 1400837138 1299224121 9781400837137 9781299224124 Year: 2007 Volume: 164 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the theory and applications of discrete orthogonal polynomials--polynomials that are orthogonal on a finite set. Unlike other books, Discrete Orthogonal Polynomials addresses completely general weight functions and presents a new methodology for handling the discrete weights case. J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin & P. D. Miller focus on asymptotic aspects of general, nonclassical discrete orthogonal polynomials and set out applications of current interest. Topics covered include the probability theory of discrete orthogonal polynomial ensembles and the continuum limit of the Toda lattice. The primary concern throughout is the asymptotic behavior of discrete orthogonal polynomials for general, nonclassical measures, in the joint limit where the degree increases as some fraction of the total number of points of collocation. The book formulates the orthogonality conditions defining these polynomials as a kind of Riemann-Hilbert problem and then generalizes the steepest descent method for such a problem to carry out the necessary asymptotic analysis.

Keywords

Orthogonal polynomials --- Asymptotic theory --- Orthogonal polynomials -- Asymptotic theory. --- Polynomials. --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Asymptotic theory. --- Asymptotic theory of orthogonal polynomials --- Algebra --- Airy function. --- Analytic continuation. --- Analytic function. --- Ansatz. --- Approximation error. --- Approximation theory. --- Asymptote. --- Asymptotic analysis. --- Asymptotic expansion. --- Asymptotic formula. --- Beta function. --- Boundary value problem. --- Calculation. --- Cauchy's integral formula. --- Cauchy–Riemann equations. --- Change of variables. --- Complex number. --- Complex plane. --- Correlation function. --- Degeneracy (mathematics). --- Determinant. --- Diagram (category theory). --- Discrete measure. --- Distribution function. --- Eigenvalues and eigenvectors. --- Equation. --- Estimation. --- Existential quantification. --- Explicit formulae (L-function). --- Factorization. --- Fredholm determinant. --- Functional derivative. --- Gamma function. --- Gradient descent. --- Harmonic analysis. --- Hermitian matrix. --- Homotopy. --- Hypergeometric function. --- I0. --- Identity matrix. --- Inequality (mathematics). --- Integrable system. --- Invariant measure. --- Inverse scattering transform. --- Invertible matrix. --- Jacobi matrix. --- Joint probability distribution. --- Lagrange multiplier. --- Lax equivalence theorem. --- Limit (mathematics). --- Linear programming. --- Lipschitz continuity. --- Matrix function. --- Maxima and minima. --- Monic polynomial. --- Monotonic function. --- Morera's theorem. --- Neumann series. --- Number line. --- Orthogonal polynomials. --- Orthogonality. --- Orthogonalization. --- Parameter. --- Parametrix. --- Pauli matrices. --- Pointwise convergence. --- Pointwise. --- Polynomial. --- Potential theory. --- Probability distribution. --- Probability measure. --- Probability theory. --- Probability. --- Proportionality (mathematics). --- Quantity. --- Random matrix. --- Random variable. --- Rate of convergence. --- Rectangle. --- Rhombus. --- Riemann surface. --- Special case. --- Spectral theory. --- Statistic. --- Subset. --- Theorem. --- Toda lattice. --- Trace (linear algebra). --- Trace class. --- Transition point. --- Triangular matrix. --- Trigonometric functions. --- Uniform continuity. --- Unit vector. --- Upper and lower bounds. --- Upper half-plane. --- Variational inequality. --- Weak solution. --- Weight function. --- Wishart distribution. --- Orthogonal polynomials - Asymptotic theory

Listing 1 - 2 of 2
Sort by