Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
Endoplasmic reticulum (ER) is an intracellular organelle responsible for protein folding and assembly, lipid and sterol biosynthesis, and calcium storage. A number of biochemical, physiological, or pathological stimuli can interrupt protein folding process, causing accumulation of unfolded or misfolded proteins in the ER lumen, a condition called “ER stress”. To cope with accumulation of unfolded or misfolded proteins, the ER has evolved a group of signaling pathways termed “Unfolded Protein Response (UPR)” or “ER stress response” to align cellular physiology. To maintain ER homeostasis, transcriptional regulation mediated through multiple UPR branches is orchestrated to increase ER folding capacity, reduce ER workload, and promote degradation of misfolded proteins. In recent years, accumulating evidence suggests that ER stress-triggered transcriptional reprogramming exists in many pathophysiological processes and plays fundamental roles in the initiation and progression of a variety of diseases, such as metabolic disease, cardiovascular disease, neurodegenerative disease, and cancer. Understanding effects and mechanisms of ER stress-associated transcriptional reprogramming has high impact on many areas of molecular genetics and will be particularly informative to the development of pharmacologic avenues towards the prevention and treatment of modern common human diseases by targeting the UPR signaling. For these reasons, ER stress response and transcriptional reprogramming are a timely and necessary topic of discussion for Frontiers in Genetics.
Cytology --- Biology --- Health & Biological Sciences --- ER stress --- Inflammation --- Transcriptional reprogramming --- Unfolded Protein Response --- Metabolism --- Oncogenes
Choose an application
Environmental stress factors negatively affect plant growth by inducing proteins dysfunction. As coping strategies, plant have developed a comprehensive protein quality controlling system (PQCS) to keep proteins homeostasis. In this research topic of “Protein Quality Controlling Systems in Plant Responses to Environmental Stresses”, some latest researches and opinions in this field, including heat shock proteins (HSPs), unfolded protein response (UPR), ubiquitin-proteasome system (UPS) and autophagy, were reported, aiming to provide novel insights for increasing crop production under environmental challenges.
unfolded protein response --- proteasome --- environmental stress --- autophagy --- plant --- heat shock proteins
Choose an application
Unfolded protein response (UPR) is a cellular adaptive response for restoring endoplasmic reticulum (ER) homeostasis in response to ER stress. Perturbation of the UPR and failure to restore ER homeostasis inevitably leads to diseases. It has now become evident that perturbation of the UPR is the cause of many important human diseases such as neurodegenerative diseases, cystic fibrosis, diabetes and cancer. It has recently emerged that virus infections can trigger the UPR but the relationship between virus infections and host UPR is intriguing. On one hand, UPR is harmful to the virus and virus has developed means to subvert the UPR. On the other hand, virus exploits the host UPR to assist in its own infection, gene expression, establishment of persistence, reactivation from latency and to evade the immune response. When this delicate balance of virus-host UPR interaction is broken down, it may cause diseases. This is particularly challenging for viruses that establish a chronic infection to maintain this balance. Each virus interacts with the host UPR in a different way to suit their life style and how the virus interacts with the host UPR can define the characteristic of a particular virus infection. Understanding how a particular virus interacts with the host UPR may pave the way to the design of a new class of anti-viral that targets this particular pathway to skew the response towards anti-virus. This knowledge can also be translated into the clinics to help re-design oncolytic virotherapy and gene therapy. In this research topic we aimed to compile a collection of focused review articles, original research articles, commentary, opinion, hypothesis and methods to highlight the current advances in this burgeoning area of research, in an attempt to provide an in-depth understanding of how viruses interact with the host UPR, which may be beneficial to the future combat of viral and human diseases.
Virus diseases. --- Viruses. --- ERAD --- virus-host interaction --- innate immunity --- Gene Therapy --- Pathogenesis --- Endoplasmic Reticulum Stress --- Unfolded Protein Response --- Autophagy
Choose an application
The endoplasmic reticulum (ER) is a manufacturing unit in eukaryotic cells required for the synthesis of proteins, lipids, metabolites and hormones. Besides supporting cellular signalling networks by its anabolic function, the ER on its own or in communication with other organelles directly initiates signalling processes of physiological significance. Based on the intimate and immediate involvement in stress signalling the ER is considered as sensory organelle on which cells strongly rely to effectively translate environmental cues into adaptive stress responses. The transcellular distribution of the ER providing comprehensive cell-to-cell connections in multicellular organisms probably allows a concerted action of cell alliances and tissue areas towards environmental constraints. At the cellular level, stress adaptation correlates with the capability of the ER machinery to synthesise proteins participating in stress signalling as well as in the activation of ER membrane localised proteins to start cell-protective signalling processes. Importantly, depending on the stress insult, the ER either supports protective strategies or initiates cell death programmes. Recent, genetic, molecular and cell biological studies have drawn an initial picture of underlying signalling events activated by ER membrane localised proteins. In this Research Topic, we will provide a platform for articles describing research on ER morphology and metabolism with a focus on stress translation. The Research Topic will be sub-divided into the following sections: 1. ER in stress signalling and adaptation; 2. ER structure and biosynthetic functions; 3. Regulation of protein processing; 4. Regulation of programmed cell death.
Endoplasmic reticulum. --- Botany. --- Endoplasmic Reticulum Stress. --- Stress, Endoplasmic Reticulum --- Endoplasmic Reticulum Stresses --- Reticulum Stress, Endoplasmic --- Reticulum Stresses, Endoplasmic --- Stresses, Endoplasmic Reticulum --- Unfolded Protein Response --- Endoplasmic Reticulum-Associated Degradation --- Botanical science --- Floristic botany --- Phytobiology --- Phytography --- Phytology --- Plant biology --- Plant science --- Biology --- Natural history --- Plants --- Cell organelles --- Myosins --- cysteine endopeptidase --- ER associated degradation --- ER bodies --- programmed cell death --- bZIP transcription factors --- caspase
Choose an application
This book gathers a collection of review articles aiming to provide an update of the current knowledge on PD pathogenesis. It notably includes an overview of several key cellular dysfunctions underlying the etiology of Parkinson’s disease, including ER stress, mitophagy and alpha-synuclein-linked pathology.
Parkinson’s disease --- unfolded protein response --- reticulum endoplasmic --- genetics --- alpha-synuclein --- prion-like spreading --- cell-to-cell transfer --- neurodegeneration --- mitochondrial dysfunction --- PINK1 --- neurons --- astrocytes --- microglia --- α-synuclein --- exocytosis --- lipids --- membranes --- Parkinson disease --- SNARE complex --- synapse --- vesicle fusion --- therapeutic target --- protein quality control --- mitochondrial quality control --- ubiquitin --- alpha-syn --- mitophagy --- Parkin --- mito-Keima --- mito-QC --- mito-SRAI
Choose an application
This book is a collection of articles from the Cells Special Issue on “Ubiquitin and Autophagy”. It contains an Editorial and 13 articles at the intersection of ubiquitin- and autophagy-related processes. Ubiquitin is a small protein modifier that is widely used to tag proteins, organelles, and pathogens for their degradation by the ubiquitin–proteasome system and/or autophagy–lysosomal pathway. Interestingly, several ubiquitin-like proteins are at a core of the autophagy mechanism. This book dedicates a lot of attention to the crosstalk between the ubiquitin–proteasome system and autophagy and serves as a good starting point for the readers interested in the current state of the knowledge on ubiquitin and autophagy.
PSMD14 --- ubiquitin --- retrograde --- trafficking --- APP --- autophagy --- Cx43 --- GABARAP --- gap junction --- MAPLC3 --- leukodystrophies --- globoid cell leukodystrophy --- psychosine --- p62 --- proteasome --- toll-like receptor 4 --- TRAF6 --- BECN1 --- ATG12~5/16 complex --- Dictyostelium --- ubiquitin-like protein --- phagocytosis --- pinocytosis --- UPS --- ubiquitin–proteasome system --- crosstalk --- tissue specificity --- C. elegans --- NFAT5 --- autophagy initiation --- islet --- FIP200 --- unfolded protein response --- UPR --- Atg8 --- LC3 --- LIR motif --- SAR --- UBL --- neurodegenerative diseases --- autophagy–lysosome pathway --- lysosome --- selective autophagy --- ubiquitination --- degradation --- the ubiquitin-proteasome system --- plants --- mitophagy --- aggrephagy --- lysophagy --- xenophagy --- lipophagy --- nucleophagy --- ER-phagy --- cargo receptors --- sorting nexins --- retromer --- endosome --- n/a --- ubiquitin-proteasome system --- autophagy-lysosome pathway
Choose an application
Natural-based biomolecules continuously play an important role in novel drug discovery for the treatment of chronic diseases. The development of natural peptide/protein-based, toxin-based, and antibody-based drugs can significantly improve the biomedical efficiency of disease-specific therapy. The focus of this Special Issue of Biomolecules will be on the most recent advances related to novel peptides/proteins, antibodies, and toxins as forms of medicinal therapy. Recent advances in the discovery and development of these natural biomolecules for use in targeted therapy and immunotherapy against chronic diseases (e.g., cancer, diabetes, cardiovascular diseases, and rheumatoid arthritis) will be addressed. The discussion on using novel disease-specific proteins/peptides/toxins/antibodies along with currently available FDA-approved drugs as combinatorial treatments will also be encouraged in this context. Finally, an overview of some of the selected promising natural biomolecules that are potentially able to address the forthcoming challenges in this field will be included. Both research (in particular) and review articles proposing novelties or overviews, respectively, are welcome.
DAPK1 --- SUMO --- SENP --- protein degradation --- post-translational modification --- amphibian Bowman-Birk inhibitor --- Tat peptide --- molecular cloning --- antifungal --- drug design --- protease inhibitor --- natural-based compound --- anticancer therapy --- lung cancer --- survivin --- apoptosis --- STAT3 --- colorectal cancer --- orientin --- cell cycle arrest --- Bcl-2 family proteins --- Astragalus membranaceus --- insulin --- PI3K --- AKT --- PPARγ --- PDX-1 --- Petasites japonicus --- Asteraceae --- lignan --- anti-inflammation --- NO --- PGE2 --- iNOS --- COX-2 --- molecular docking --- peptides --- kynurenines --- binding affinity --- μ-opioid receptor --- pharmacophore --- G-protein activation --- fucoidan --- PLGA --- docetaxel --- drug delivery system --- anticancer therapy/cancer treatment --- hIAPP --- amyloidogenesis --- insulin granules --- endoplasmic reticulum --- anionic lipids --- F23R variant --- β-sheet transitions --- β-cell cytotoxicity --- unfolded protein response --- pomegranate --- punicalagin --- tannins --- gingiva --- fibroblasts --- antioxidant --- wound healing --- branched-chain fatty acids --- Conidiobolus heterosporus --- peroxisome proliferator-activated receptor α --- lipid metabolism --- fatty acid oxidation --- hepatocyte --- n/a
Choose an application
The cooperation of highly specialized cell types maintains the homeostasis of multicellular organisms. The disturbance of that harmony contributes to the development of several diseases. Most of the cellular functions are executed by proteins, so it is essential to investigate biological processes at the protein level. Antibodies, complex biomolecules with high specificity, are used to recognize our protein of interest in a process known as “immunophenotyping”. One of the routinely used methods to study cellular proteins is flow cytometry, which detects cell surface or intracellular proteins at single-cell resolution. The other most frequent technique is the traditional immunohistochemical investigation of microscopic sections of human tissues. We called authors to publish their latest data studying cancer or autoimmune diseases by immunophenotyping.
CD8+CD28− T cells --- cancer immunology --- glioblastoma --- immunotherapy --- malignant glioma --- cancer --- accidental cell death --- oncosis --- DDR --- parthanatos --- flow cytometry --- systemic lupus erythematosus --- T cells --- glycosylation --- sialylation --- lectin binding --- glycosylation enzymes --- galectin 1 --- choriocarcinoma --- hydatidiform mole --- galectin --- gestational trophoblastic disease --- placental-specific gene --- systems biology --- trophoblast differentiation --- B cells --- non-switched B cells --- systemic sclerosis --- dcSSc --- TLR --- CD180 --- RP105 --- CpG --- IL-6 --- IL-10 --- natural autoantibodies --- IgM --- citrate synthase --- DNA topoisomerase I --- unfolded protein response --- Inositol-requiring enzyme 1 (IRE1) --- PKR-like endoplasmic reticulum kinase (PERK) --- Glucose-regulated protein 78 (GRP78) --- Activating transcription factor 6 (ATF6) --- immune cells --- T cell --- macrophage --- tumor microenvironment --- single cell mass cytometry --- metastatic breast cancer --- myeloid-derived suppressor cells --- immunophenotyping --- breast cancer --- trastuzumab --- chimeric antigen receptor --- cell therapy --- neuroendocrine neoplasia --- neuroendocrine tumor --- neuroendocrine carcinoma --- immunohistochemistry --- syntaxin 1
Choose an application
Following the implementation of next-generation sequencing technologies (e.g., exome and genome sequencing) in molecular diagnostics, the majority of genetic defects underlying inherited retinal disease (IRD) can readily be identified. In parallel, opportunities to counteract the molecular consequences of these defects are rapidly emerging, providing hope for personalized medicine. ‘Classical’ gene augmentation therapy has been under study for several genetic subtypes of IRD and can be considered a safe and sometimes effective therapeutic strategy. The recent market approval of the first retinal gene augmentation therapy product (LuxturnaTM, for individuals with bi-allelic RPE65 mutations) by the FDA has not only demonstrated the potential of this specific approach, but also opened avenues for the development of other strategies. However, every gene—or even every mutation—may need a tailor-made therapeutic approach, in order to obtain the most efficacious strategy with minimal risks associated. In addition to gene augmentation therapy, other subtypes of molecular therapy are currently being designed and/or implemented, including splice modulation, DNA or RNA editing, optogenetics and pharmacological modulation. In addition, the development of proper delivery vectors has gained strong attention, and should not be overlooked when designing and testing a novel therapeutic approach. In this Special Issue, we aim to describe the current state of the art of molecular therapeutics for IRD, and discuss existing and novel therapeutic strategies, from idea to implementation, and from bench to bedside.
induced pluripotent stem cell (iPSC) --- clustered regularly interspaced short palindromic repeats (CRISPR) --- homology-directed repair (HDR) --- Enhanced S-Cone Syndrome (ESCS) --- NR2E3 --- AAV --- retina --- gene therapy --- dual AAV --- gold nanoparticles --- DNA-wrapped gold nanoparticles --- ARPE-19 cells --- retinal pigment epithelium --- clathrin-coated vesicles --- endosomal trafficking --- retinitis pigmentosa --- autosomal dominant --- G56R --- putative dominant negative effect --- gapmer antisense oligonucleotides --- allele-specific knockdown --- Leber congenital amaurosis and allied retinal ciliopathies --- CEP290 --- Flanders founder c.4723A > --- T nonsense mutation --- Cilia elongation --- spontaneous nonsense correction --- AON-mediated exon skipping --- microRNA --- photoreceptors --- rods --- cones --- bipolar cells --- Müller glia --- retinal inherited disorders --- retinal degeneration --- antisense oligonucleotides --- Stargardt disease --- inherited retinal diseases --- splicing modulation --- RNA therapy --- ABCA4 --- iPSC-derived photoreceptor precursor cells --- cyclic GMP --- apoptosis --- necrosis --- drug delivery systems --- translational medicine --- Usher syndrome --- Leber congenital amaurosis --- RPE65 --- nonprofit --- patient registry --- translational --- protein trafficking --- protein folding --- protein degradation --- chaperones --- chaperonins --- heat shock response --- unfolded protein response --- autophagy --- therapy --- IRD --- DNA therapies --- RNA therapies --- compound therapies --- clinical trials --- Retinitis Pigmentosa GTPase Regulator --- adeno-associated viral --- Retinitis Pigmentosa (RP) --- choroideremia --- REP1 --- inherited retinal disease --- treatment --- apical polarity --- crumbs complex --- fetal retina --- PAR complex --- retinal organoids --- retinogenesis --- gene augmentation --- adeno-associated virus (AAV) --- n/a --- Müller glia
Choose an application
Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis, are the most common pathologies of the central nervous system currently without a cure. They share common molecular and cellular characteristics, including protein misfolding, mitochondrial dysfunction, glutamate toxicity, dysregulation of calcium homeostasis, oxidative stress, inflammation, and ageing, which contribute to neuronal death. Efforts to treat these diseases are often limited by their multifactorial etiology. Natural products, thanks to their multitarget activities, are considered promising alternatives for the treatment of neurodegeneration. This book deals with two different forms of natural products: extracts and isolated compounds. The study of the bioactivity of the extracts is extremely important as many studies have demonstrated the synergistic effect of the combination of different natural products. On the other hand, the investigation of the activity of specifically isolated natural products can be also important to understand their cellular and molecular mechanisms and to define the specific bioactive components in extracts or foods. This book can be considered an important contribution to knowledge of the neuroprotective effect of natural products and presents a great deal of information, related to both the benefits but also the limitations of their use in counteracting neurodegeneration.
Vitamin D --- Multiple Sclerosis --- symptom --- neurodegeneration --- oxidative injury --- Parkinson’s disease --- terpenes, rotenone --- thymol --- Alzheimer’s disease --- Centella asiatica --- hippocampus --- protein poshophatase 2 --- glycogen synthase kinase 3 --- B-cell lymphoma 2 --- neuroprotection --- nutraceuticals --- bioavailability --- stress response --- neurodegenerative disease --- bioactive compound --- natural extract --- β-amyloid peptide --- tau protein --- clinical trial --- human studies --- animal studies --- in vitro studies --- curcumin --- free radicals --- heme oxygenase --- safety profile --- type 2 diabetes --- inflammation --- vascular damage --- learning --- memory --- natural compound --- oxidative stress --- cognitive dysfunction --- cell death --- synapse loss --- protein aggregation --- neuroinflammation --- algae --- seaweeds --- neurodegenerative diseases --- auraptene --- dopamine neuron --- antioxidant --- mitochondria --- Chionanthus retusus --- flavonoid --- flower --- HO-1 --- NO --- Lippia citriodora --- VEE --- Vs --- relaxation --- depression --- cyclic AMP --- calcium --- blood–brain barrier --- catechin --- cognition --- epigallocatechin gallate --- green tea --- microbiota --- 5-(3,5-dihydroxyphenyl)-γ-valerolactone --- ascaroside pheromone --- C. elegans --- dauer --- neuronal signaling --- sexual behavior --- survival signals --- proteostasis --- chaperones --- autophagy --- ubiquitin-proteasome --- unfolded protein response --- natural compounds --- natural products --- ethics --- patients’ autonomy --- beneficence --- nonmaleficence --- medical liability --- Parkinson’s disease (PD) --- mitochondrial dysfunction --- dynamics --- hormesis --- ubiquitin‒proteasome system (UPS) --- mitophagy --- n/a --- Parkinson's disease --- Alzheimer's disease --- blood-brain barrier --- patients' autonomy --- Parkinson's disease (PD)
Listing 1 - 10 of 12 | << page >> |
Sort by
|