Listing 1 - 10 of 76 | << page >> |
Sort by
|
Choose an application
This edition is a reprint of the Special Issue published online in the open access journal Remote Sensing (ISSN 2072-4292) from 2016–2017 (available at: http://www.mdpi.com/journal/remotesensing/special issues/rsALS), complemented by selected articles published in Remote Sensing
Choose an application
Der Prozess des Einmischens von Luft aus der freien Atmosphäre in die konvektive Grenzschicht wird mit Hilfe eines Doppler Lidars und konzeptioneller Ansätze untersucht. Durch detaillierte Betrachtung der Vorgänge an der Oberkante der Grenzschicht einerseits und der quantitativen Erfassung der Wirkung dieser Vorgänge andererseits, konnte eine Erweiterung des Prozessverständnisses erfolgen sowie Möglichkeiten zu einer robusteren numerischen Beschreibung des Prozesses aufgezeigt werden.
Entrainment --- Grenzschicht --- Doppler Lidar --- Einmischen
Choose an application
Coherent structures are patterns in the wind field of the atmospheric boundary layer. The deployment of two scanning Doppler lidars facilitates the measurement of the horizontal wind field, but the inherent averaging processes complicate an interpretation of the results. To assess the suitability of this technique for coherent structure detection large-eddy simulations are used as a basis for virtual measurements, and the effects of the lidar technique on the wind field structure are analyzed.
Doppler-Lidar --- atmosphärische GrenzschichtDoppler-lidar --- Meteorologie --- large-eddy simulation --- meteorology --- kohärente Strukturen --- boundary layer --- coherent structures --- Grobstruktursimulation
Choose an application
In this book we successfully demonstrate a millimeter-precision laser rangefinder using a low-cost photon counter. An application-specific integrated circuit (ASIC) comprises timing circuitry and single-photon avalanche diodes (SPADs) as the photodetectors. For the timing circuitry, a novel binning architecture for sampling the received signal is proposed which mitigates non-idealities that are inherent to a system with SPADs and timing circuitry in one chip.
Photonenzähler --- Laser-EntfernungsmessgerätDistance measurement --- SPAD --- laser rangefinder --- Entfernungsmessung --- LIDAR --- photon counter
Choose an application
This Special Issue “Atmospheric Conditions for Wind Energy Applications” hosts papers on aspects of remote sensing for atmospheric conditions for wind energy applications. Wind lidar technology is presented from a theoretical view on the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind turbine control, wind farm wake, and gust characterizations is presented, as well as methods to reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting are presented. For the offshore environment, floating lidar data processing is presented as well as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data are presented..
complex flow --- Floating Lidar System (FLS) --- mesoscale --- wind energy resources --- variational analysis --- wind turbine --- wind sensing --- wind energy --- wind gusts --- wake --- wind structure --- complex terrain --- global ocean --- remote sensing forecasting --- detached eddy simulation --- five-minute ahead wind power forecasting --- tropical cyclones --- fetch effect --- aerosol --- vertical Light Detection and Ranging --- range gate length --- resource assessment --- field experiments --- remote sensing --- optical flow --- turbulence --- atmospheric boundary layer --- Doppler Wind Lidar --- offshore --- empirical equation --- Lidar --- WindSAT --- coastal wind measurement --- offshore wind speed forecasting --- Doppler wind lidar --- Doppler --- wind --- wind lidar --- cross-correlation --- QuikSCAT --- wind resource assessment --- detecting and tracking --- single-particle --- gust prediction --- NWP model --- velocity-azimuth-display algorithm --- lidar-assisted control (LAC) --- Doppler lidar --- motion estimation --- power performance testing --- lidar --- large-eddy simulations --- wind farm --- coherent Doppler lidar --- wake modeling --- probabilistic forecasting --- control --- NeoWins --- wind turbine controls --- impact prediction --- wind turbine wake --- Hazaki Oceanographical Research Station --- VAD --- virtual lidar --- Doppler radar --- IEA Wind Task 32 --- ASCAT --- wind atlas --- turbulence intensity
Choose an application
GNSS is often inaccurate and satellite signals are not always available, which results in ambiguous situations. In order to reduce their negative effects on train-borne localization, this work proposes an approach for the detection of tracks, turnouts, and branching directions solely from 2d lidar sensor measurements. The experimental evaluation shows highly correct and complete results. In summary, these detections are sufficient to reduce ambiguity problems in train-borne localization.
lidar-basierte Eisenbahn-Infrastruktur-Detektion (Schienen --- Gleise --- lidar based railway infrastructure detection (rails --- bordautonome Lokalisierung --- Topologie- und Befahrrichtungserkennung --- determination of topology and branching direction --- train-borne localization --- Weichen) --- turnouts) --- tracks
Choose an application
Upper Carboniferous (Westphalian C/D) fluvial sandstones and Zechstein Ca2 (Stassfurt, second cycle) carbonates represent two important hydrocarbon reservoir units in NW Europe. A better understanding of reservoir quality variations and their spatial variability is crucial to develop successful exploration strategies. In fluvial Westphalian C/D sandstones and Ca2 carbonate reservoirs, the reservoir properties are controlled by diagenetic alterations and intense fracturing.
Choose an application
Earth Observations (EO) encompasses different types of sensors (e.g., SAR, LiDAR, Optical and multispectral) and platforms (e.g., satellites, aircraft, and Unmanned Aerial Vehicles) and enables us to monitor and model geohazards over regions at different scales in which ground observations may not be possible due to physical and/or political constraints. EO can provide high spatial, temporal and spectral resolution, stereo-mapping and all-weather-imaging capabilities, but not by a single satellite at a time. Improved satellite and sensor technologies, increased frequency of satellite measurements, and easier access and interpretation of EO information have all contributed to the increased demand for satellite EO data. EO, combined with complementary terrestrial observations and with physical models, have been widely used to monitor geohazards, revolutionizing our understanding of how the Earth system works.
LiDAR --- InSAR --- remote sensing --- earthquake --- UAV --- landslide --- land subsidence --- earth observation --- surface displacement --- geohazards --- deformation --- optical --- damage assessment
Choose an application
LiDAR Principles, Processing and Applications in Forest Ecology introduces the principles of LiDAR technology and explains how to collect and process LiDAR data from different platforms based on real-world experience. The book provides state-of the-art algorithms on how to extract forest parameters from LiDAR and explains how to use them in forest ecology. It gives an interdisciplinary view, from the perspective of remote sensing and forest ecology. Because LiDAR is still rapidly developing, researchers must use programming languages to understand and process LiDAR data instead of established software. In response, this book provides Python code examples and sample data. Sections give a brief history and introduce the principles of LiDAR, as well as three commonly seen LiDAR platforms. The book lays out step-by-step coverage of LiDAR data processing and forest structure parameter extraction, complete with Python examples. Given the increasing usefulness of LiDAR in forest ecology, this volume represents an important resource for researchers, students and forest managers to better understand LiDAR technology and its use in forest ecology across the world. The title contains over 15 years of research, as well as contributions from scientists across the world. Presents LiDAR applications for forest ecology based in real-world experience Lays out the principles of LiDAR technology in forest ecology in a systematic and clear way Provides readers with state-of the-art algorithms on how to extract forest parameters from LiDAR Offers Python code examples and sample data to assist researchers in understanding and processing LiDAR data Contains over 15 years of research on LiDAR in forest ecology and contributions from scientists working in this field across the world.
Forest ecology. --- Forest mapping. --- Optical radar. --- Laser radar --- Lidar --- Laser communication systems --- Optical communications --- Optoelectronic devices --- Radar --- Forests and forestry --- Forest surveys --- Vegetation mapping --- Forest ecosystems --- Ecology --- Mapping
Choose an application
The book presents a method to create a land cover map from lidar data (elevation, intensity and standard deviation of height). The intensity of the observed object depends on many factors and is therefore not easy to interpret. With careful study of the problem and implementing various improvements we managed to distinctively classify categories of grass, agricultural fields and asphalt. We used standard deviation of height to differentiate trees and buildings, because this was not possible using intensity data alone. On the basis of independent lidar data a high quality three dimensional land cover map of local area has been successfully generated. It distinguishes five basic categories, although more detailed sub-categories could be introduced if necessary. Once the methodology is determined, products can be generated fully automatically, with minimal effort and costs. The resulting maps are of very high positional and thematic accuracy with numerous advantages for local studies. Knjiga opisuje postopek izdelave karte pokrovnosti iz podatkov lidarskega snemanja, kot so višina, intenziteta in standardni odklon višine. Intenziteta opazovanega objekta je odvisna od vrste dejavnikov in zato težavna za interpretacijo. Po njeni preučitvi in nekaterih izboljšavah smo zelo dobro razločili kategorije pokrovnosti trava, njive in asfalt, za razločitev dreves in stavb pa smo morali uporabiti še standardni odklon višin. Na osnovi samostojnih lidarskih podatkov smo uspeli izdelati kakovostno karto pokrovnosti krajevnega območja, ki loči pet osnovnih kategorij, po potrebi pa jih lahko ločimo tudi več. Ko je postopek izdelave karte znan, lahko karto izdelamo povsem samodejno, z minimalnim naporom in stroški. Pri tem dobimo karto zelo dobre položajne in tematske natančnosti, s številnimi prednostmi za krajevne študije.
aerial laser scanning --- coverage --- intensity --- land cover --- lidar --- remote sensing --- Slovenia --- daljinsko zaznavanje --- intenziteta --- pokrovnost --- pokrovnost tal --- Slovenija --- zračno lasersko skeniranje
Listing 1 - 10 of 76 | << page >> |
Sort by
|