Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
Hydrocyanic acid --- Carbon monoxide --- Chemical weapons. --- Health risk assessment. --- Assessment, Health risk --- Health hazard appraisal --- Health hazard assessment --- Health risk appraisal --- HRA (Public health) --- Human risk assessment --- Medicine, Preventive --- Public health --- Risk assessment --- Environmental health --- Weapons of mass destruction --- Formonitrile --- Hydrogen cyanide --- Prussic acid --- Cyanides --- Toxicology.
Choose an application
Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.
CO dehydrogenase --- dihydrogen --- hydrogenase --- quantum/classical modeling --- density functional theory --- metal–dithiolene --- pyranopterin molybdenum enzymes --- fold-angle --- tungsten enzymes --- electronic structure --- pseudo-Jahn–Teller effect --- thione --- molybdenum cofactor --- Moco --- mixed-valence complex --- dithiolene ligand --- tetra-nuclear nickel complex --- X-ray structure --- magnetic moment --- formate hydrogenlyase --- hydrogen metabolism --- energy conservation --- MRP (multiple resistance and pH)-type Na+/H+ antiporter --- CCCP—carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA—5-(N-ethyl-N-isopropyl)-amiloride --- nicotinamide adenine dinucleotide (NADH) --- electron transfer --- enzyme kinetics --- enzyme structure --- formate dehydrogenase --- carbon assimilation --- Moco biosynthesis --- Fe-S cluster assembly --- l-cysteine desulfurase --- ISC --- SUF --- NIF --- iron --- molybdenum --- sulfur --- tungsten cofactor --- aldehyde:ferredoxin oxidoreductase --- benzoyl-CoA reductase --- acetylene hydratase --- [Fe]-hydrogenase --- FeGP cofactor --- guanylylpyridinol --- conformational changes --- X-ray crystallography --- iron-sulfur cluster --- persulfide --- metallocofactor --- frataxin --- Friedreich’s ataxia --- n/a --- metal-dithiolene --- pseudo-Jahn-Teller effect --- CCCP-carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA-5-(N-ethyl-N-isopropyl)-amiloride --- Friedreich's ataxia
Choose an application
The Last Gasp takes us to the dark side of human history in the first full chronicle of the gas chamber in the United States. In page-turning detail, award-winning writer Scott Christianson tells a dreadful story that is full of surprising and provocative new findings. First constructed in Nevada in 1924, the gas chamber, a method of killing sealed off and removed from the sight and hearing of witnesses, was originally touted as a "humane" method of execution. Delving into science, war, industry, medicine, law, and politics, Christianson overturns this mythology for good. He exposes the sinister links between corporations looking for profit, the military, and the first uses of the gas chamber after World War I. He explores little-known connections between the gas chamber and the eugenics movement. Perhaps most controversially, he has unearthed new evidence about American and German collaboration in the production and lethal use of hydrogen cyanide and about Hitler's adoption of gas chamber technology developed in the United States. More than a book about the death penalty, this compelling history ultimately reveals much about America's values and power structures in the twentieth century.
Gas chambers --- Capital punishment --- History. --- History --- 1924. --- 20th century. --- america. --- american history. --- collaboration. --- controversial. --- dark. --- death penalty. --- eugenics movement. --- gas chamber technology. --- gas chamber. --- germany. --- hitler. --- human cruelty. --- human execution. --- human history. --- hydrogen cyanide. --- industry. --- law. --- lethal gas chambers. --- medicine. --- method of killing. --- military uses. --- modern history. --- nevada. --- no witnesses. --- out of sight. --- politics. --- power structures. --- profit. --- science. --- united states. --- war. --- world war i. --- wwi.
Choose an application
This is a Special Issue of Metals devoted to aspects of Advances in Mineral Processing and Hydrometallurgy. This includes a global call for article submissions that also included Characterization along with Recycling and Waste Minimization. As such, both primary and recycled aspects will be considered. Possible specific topics included Mineralogy, Geometallurgy, Thermodynamics, Kinetics, Comminution, Classification, Physical Separations, Liquid–Solid Separations, Leaching, Solvent Extraction, Ion Exchange, Activated Carbon, Precipitation, Reduction, Process Economics and Process Control. Suggested application areas were in Gold, Silver, PGM’s, Aluminum, Copper, Zinc, Lead, Nickel, and Titanium. Critical Metals articles on topics such as Lithium, Antimony Tellurium, Gallium, Germanium, Cobalt, Graphite, Indium, and Rare Earth were also welcome. As such, this Special Issue of Metals was well supported by diverse submissions and the final publication of high-quality peer-reviewed articles.
BOS filter cakes --- butyric acid --- selective leaching --- leaching behaviors --- zinc --- iron --- chalcocite --- sulphide leaching --- copper --- reusing water --- desalination residue --- ecological treatment --- leaching --- black copper ore --- copper wad --- copper pitch --- comminution --- grinding circuit --- Swebrec function --- size distribution models --- modelling --- lateritic ore --- iron and steelmaking wastes --- alkalis --- aqueous treatment --- waste treatment --- reducing agent --- manganese --- viscoelasticity --- quartz --- kaolin --- seawater --- magnesium precipitates --- chalcopyrite concentrate --- hydrogen peroxide --- sulfuric acid --- leaching kinetics --- copper tailings --- rheology --- fractal aggregates --- thickening --- MnO2 --- acid media --- ANOVA --- dissolution --- arsenic --- trisulfide --- copper sulfate --- kinetics --- shrinking core model --- time-to-a-given-fraction kinetics analysis --- silica recovery --- column flotation --- mining waste --- waste reprocessing --- CuFeS2 --- chloride media --- manganese nodules --- thiosulfate --- gold leaching --- silver leaching --- kinetic analysis --- sedimentary ore --- diffusion control --- mixed control --- chalcopyrite --- ionic liquid --- bromide --- seawater flotation --- pyrite depression --- guar gum --- FBRM --- clay-based copper tailings --- fractal dimension --- mixing intensity --- population balance model --- seawater flocculation --- platinum-group metal --- metal precipitation --- ion-pair --- aliphatic primary amine --- hydrochloric acid --- enhanced flocculation --- water recovering --- magnesium removal --- shredded waste printed circuit boards --- precious metals --- bromine --- platinum group elements --- catalytic converters --- acidic fusion --- acidic leaching --- sulfation --- n/a --- nitrate --- gas scrubbing --- recovery --- gold --- refractory --- nitric acid --- microwave --- coal fly ash --- sandy grade alumina --- AlCl3·6H2O --- crystallization --- salting-out method --- gibbsite --- precipitation --- electric arc furnace dust --- monosodium glutamate --- ammonia leaching --- high-pressure leaching --- copper extraction --- silver extraction --- desilication --- malachite --- carbonate --- ammonium hydroxide --- heterogeneous model --- rare earth elements --- NdFeB permanent magnet --- hydrometallurgical --- electrodialysis (ED) --- lithium --- lithium-ion battery --- lithium sulfate --- multistage concentration (MSC) --- gold cyanide leaching --- sulfide minerals --- SART process --- cyanidation --- activated carbon --- metal–cyanide complex --- copper ore --- carbon in pulp (CIP), agitated tank --- cyanide complexes --- metal-cyanide complex
Choose an application
Atomic processes in plasmas and gases encompass broad areas in theoretical, experimental, atomic and molecular physics. One example is atomic processes that are involved in the study of various plasmas over a wide range of electron densities and temperatures. The topics in this area covered in the present book include magnetic fusion plasmas, laser-produced plasmas, as well as plasma spectroscopy for all of the above applications. Another example is atomic and molecular processes in neutral gases. Rydberg polar molecules in particular are covered in this book.
Research & information: general --- Physics --- generalized Hamiltonian dynamics --- spherical harmonic oscillator --- classical non-radiating stationary states --- algebraic symmetry of classical systems --- polar molecule --- Rydberg electron --- classical motion --- periodic orbits --- quantum linear oscillator --- chirped laser pulse --- photoexcitation --- laser–plasma interactions --- plasma dynamics and flow --- hypersonic flows --- optical emission spectroscopy --- hydrogen --- cyanide --- Abel inversion --- astrophysics --- white dwarf stars --- charge exchange --- cross section --- tokamak plasmas --- spectroscopy --- plasma spectroscopy --- polarization --- Lyman-alpha --- nuclear fusion --- space-time couplings --- spatiotemporal --- ultrafast optics --- unipolar pulses --- few cycle pulses --- n/a --- laser-plasma interactions
Choose an application
Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.
metadynamics --- minerals --- n/a --- microstructure --- dissolution-reprecipitation --- stabilization --- albite --- mineral–water interface --- simulation --- krennerite --- mineralogy --- mineral replacement --- calcite --- pyrite --- dissolution-precipitation --- goethite --- recrystallization --- gold–(silver) tellurides --- isotopes --- non-classical nucleation --- calaverite --- interfacial precipitation --- toxic metals --- metasomatism --- adsorption --- amorphous --- pre-nucleation clusters --- surface --- dissolution --- hematite --- cyanide --- MOFs --- leaching --- Raman spectroscopy --- sodalite --- carbonation --- rate spectra --- retreat velocity --- additives --- liquid precursors --- bioaragonite --- brucite --- kinetics --- re-adsorption --- brushite --- polymorphs --- dissolution–precipitation --- hydrothermal experiments --- apatite --- ferrihydrite --- mesocrystals --- catalysts --- carbonic anhydrase --- XPS --- replacement reaction --- mineral growth --- carbon capture and storage --- interfaces --- citrate --- classical nucleation theory --- REEs --- phosphate --- wollastonite --- polarization microscopy --- natural porous gold --- sylvanite --- analcime --- calcium phosphate --- Fe atom exchange --- nepheline --- biomineralisation --- interface-coupled dissolution–reprecipitation --- hydrothermal method --- mineral-water interface --- gold-(silver) tellurides --- interface-coupled dissolution-reprecipitation
Choose an application
In the late nineteenth century, Mexican citizens quickly adopted new technologies imported from abroad to sew cloth, manufacture glass bottles, refine minerals, and provide many goods and services. Rapid technological change supported economic growth and also brought cultural change and social dislocation. Drawing on three detailed case studies-the sewing machine, a glass bottle-blowing factory, and the cyanide process for gold and silver refining-Edward Beatty explores a central paradox of economic growth in nineteenth-century Mexico: while Mexicans made significant efforts to integrate new machines and products, difficulties in assimilating the skills required to use emerging technologies resulted in a persistent dependence on international expertise.
Technological innovations --- Technology transfer --- Technological transfer --- Transfer of technology --- Diffusion of innovations --- Inventions --- Research, Industrial --- Technology and international relations --- Foreign licensing agreements --- Technological forecasting --- Technology --- Breakthroughs, Technological --- Innovations, Industrial --- Innovations, Technological --- Technical innovations --- Technological breakthroughs --- Technological change --- Creative ability in technology --- Domestication of technology --- Innovation relay centers --- History --- International cooperation --- E-books --- Philosophy and psychology of culture --- anno 1800-1899 --- Mexico --- 19th century. --- automation of technology. --- cyanide. --- economic development. --- economic growth. --- economic historian. --- emerging technologies. --- glass bottle manufacturing. --- history of technology. --- history students. --- history teachers. --- history. --- imported technology of 19th century. --- industrialism. --- latin america. --- manufacturing. --- mexican economy. --- mexican patents. --- mexico. --- second industrial revolution. --- sewing machines. --- students and scholars. --- technologies. --- technology and imports. --- technology in mexico. --- turn of the century technology.
Choose an application
The increasingly stricter standards for effluent discharge and the decreasing availability of freshwater resources worldwide have made the development of advanced wastewater treatment technologies necessary. Advanced oxidation processes (AOPs) are becoming an attractive alternative and a complementary treatment option to conventional methods. AOPs are used to improve the biodegradability of wastewaters containing non-biodegradable organics. Besides, AOPs may inactivate pathogenic microorganisms without adding additional chemicals to the water during disinfection, avoiding the formation of hazardous by-products. This Special Issue of Processes aims to cover recent progress and novel trends in the field of AOPs, including UV/H2O2, O3, sulphate-radical oxidation, nanotechnology in AOPs, heterogeneous photocatalysis, sonolysis, Fenton, photo-Fenton, electrochemical oxidation, and related oxidation processes. The topics to be addressed in this Special Issue of Processes may also include the application of AOPs at various scales (laboratory, pilot, or industrial scale), the degradation of emerging contaminants in water and wastewater and pollutants in the gas phase, the quantification of toxicicy in residuals, the development of novel catalytic materials and of hybrid processes, including the combination of AOPs with other technologies, process intensification, and the use of photo-electrochemical processes for energy production.
polycyclic musks --- degradation mechanism --- UV/chlorine advanced oxidation process --- water treatment --- UV-LED --- photoreactors --- mining wastewater --- cyanide --- metal removal --- photocatalysis --- TiO2 nanotubes --- emerging contaminants --- paracetamol --- pH --- heating oxidation --- surface/interface properties --- floatability --- induction time --- bubble-particle wrap angle --- cow manure --- chemical activation process --- activated carbon --- pore property --- cationic pollutant --- adsorption performance --- nano zero-valent iron --- borohydride reduction method --- wastewater treatment --- iron nanopowders --- lead ions --- biological processes --- electrochemical processes --- oxidation processes --- petroleum --- phenols --- sulfides --- ethyl violet --- Mn-doped Fe/rGO nanocomposites --- mesoporous materials --- artificial intelligence --- gradient boosted regression trees --- total dissolved nitrogen --- digestion method --- digestion efficiency --- intensification --- ozone --- electrolyzed water --- foodborne pathogens --- sanitization --- advace oxitadion processes (AOP) --- electro-oxidation --- ferrate ion --- BBR dye --- n/a
Choose an application
The Special Issue “Molecules from Side Reactions” is a collection of papers reporting on the synthesis and characterization of the molecules that come from unexpected synthetic routes. This is the first example of a Special Issue based on such a topic, notwithstanding that all synthetic chemists have isolated a side product during a chemical reaction. Instead of continuing to store the side products in the freezer, I have thought to give them the dignity of publication, making them available to the scientific community. The short manuscripts collected here respect the principle of “one compound per paper” and have the purpose of preserving the molecular diversity deriving from a chemical reaction. The molecular scaffolds are unexpected and intriguing, and could be useful starting points or intermediates for exploring novel reactions.
oxazole --- furan --- RORC reaction --- (E,Z)-isomerization --- nitration --- azaheterocycles --- N–C bond cleavage --- pyridine-imidazolium --- ribose --- psicose --- ketose --- rare sugar --- hydroxy methylation --- AICAR --- acadesine --- phosphorylation --- fluorination --- fluorinated nucleosides --- nucleoside analogues --- modified nucleosides --- chlorinated nucleosides --- AMPK --- organic synthesis --- bidentate directing groups --- benzamides --- chelation assistance --- bis-chelates --- C–H bond functionalization --- X-ray structure determination --- N′-acetylhydrazide --- 3-acetyl-2,3-dihydro-1,3,4-oxadiazole --- 1H-pyrazolo[3,4-b]pyridine --- heterocycle --- oxetane --- epoxide --- rearrangement --- carbohydrate --- C-glycosylation --- spiro-oxetane --- ester group migration --- glycosyl sulfoxide --- uronate --- thioglycoside oxidation --- mannose --- 8-Fluoro-2′-deoxyguanosine --- 19F NMR spectroscopy --- solid phase synthesis --- phosphoramidite --- muraymycins --- caprazamycins --- nucleosides --- uridine --- cyclization --- seven-membered rings --- conjugated diyne --- LAH reduction --- diacetal --- pent-1,2,3,4-tetraene intermediate --- ligand --- pyridine derivatives --- allenic compounds --- N-alkylation --- copper --- cyanide --- network --- guanidinium --- unexpected iminium cation --- n/a --- N-C bond cleavage --- C-H bond functionalization --- N'-acetylhydrazide --- 8-Fluoro-2'-deoxyguanosine
Choose an application
Biotransformation has accompanied mankind since the Neolithic community, when people settled down and began to engage in agriculture. Modern biocatalysis started in the mid-1850s with the pioneer works of Pasteur. Today, biotransformations have become an indispensable part of our lives, similar to other hi-tech products. Now, in 2019, biocatalysis “received” the Nobel Prize in Chemistry due to prof. Frances H. Arnold’s achievements in the area of the directed evolution of enzymes. This book deals with some major topics of biotransformation, such as the application of enzymatic methods in glycobiology, including the synthesis of hyaluronan, complex glycoconjugates of N-acetylmuramic acid, and the enzymatic deglycosylation of rutin. Enzymatic redox reactions were exemplified by the enzymatic synthesis of indigo from indole, oxidations of β-ketoesters and the engineering of a horse radish peroxidase. The enzymatic reactions were elegantly employed in biosensors, such as glucose oxidase, in the case of electrochemical glucose sensors. Nitrilases are important enzymes for nitrile metabolism in plants and microorganisms have already found broad application in industry—here, these enzymes were for the first time described in Basidiomyceta. This book nicely describes molecular biocatalysis as a pluripotent methodology—“A jack of all trades...”—which strongly contributes to the high quality and sustainability of our daily lives.
E. coli --- recombinant horseradish peroxidase --- site-directed mutagenesis --- periplasm --- glycosylation sites --- Aspergillus niger --- quercetin --- rutin --- rutinose --- rutinosidase --- “solid-state biocatalysis” --- hyaluronic acid --- in vitro synthesis --- one-pot multi-enzyme --- optimization --- enzyme cascade --- Basidiomycota --- Agaricomycotina --- nitrilase --- cyanide hydratase --- nitrile --- substrate specificity --- overproduction --- homology modeling --- substrate docking --- phylogenetic distribution --- indigo --- MISO library --- flavin --- monooxygenase --- FMO --- β-N-acetylhexosaminidases --- transglycosylation --- Glide docking --- Talaromyces flavus --- muramic acid --- non-reducing carbohydrate --- glucose oxidase --- direct electron transfer --- amine-reactive phenazine ethosulfate --- glucose sensor --- glycemic level monitoring --- Pseudomonas putida MnB1 --- biogenic manganese oxides --- abiotic manganese oxides --- α-Hydroxy-β-keto esters --- whole-cell biocatalysis --- surface display --- cell wall anchor --- Lactobacillus plantarum --- whole-cell biocatalyst --- n/a --- Fe(II)/2-ketoglutarate-dependent dioxygenase --- 2-ketoglutarate generation --- regio- and stereo-selective synthesis --- hydroxy amino acids --- sequential cascade reaction --- "solid-state biocatalysis"
Listing 1 - 10 of 11 | << page >> |
Sort by
|