Narrow your search

Library

Thomas More Mechelen (6)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

UCLL (5)

VIVES (5)

FARO (4)

Vlaams Parlement (4)

ULB (3)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (2)

2021 (2)

2007 (1)

2000 (1)

Listing 1 - 6 of 6
Sort by

Book
Advancement in the Fluid Dynamics Research of Reversible Pump-Turbine
Authors: --- ---
ISBN: 3036558578 3036558586 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pumped storage technology is a large-scale, efficient, flexible and clean energy storage technology. The core of it is the design of pumped storage units, which involves the operation and flow characteristics of vane hydraulic machinery under pump and turbine modes, as well as the complex flow conditions of the upstream and downstream flow channels of the units. With this as the background, this book expounds on the relevant problems and their solutions, providing a scientific basis for the development of pumped storage technology. I hope this book can provide as a useful reference for readers.

Design of highly loaded axial-flow fans and compressors.
Author:
ISBN: 0933283113 Year: 2000 Publisher: White River Junction Concepts ETI

Compressor instability with integral methods
Authors: ---
ISBN: 1280955449 9786610955442 3540724125 3540724117 3642091474 Year: 2007 Publisher: Berlin ; New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Compressor Instability with Integral Methods" is a book, to bring together the quick integral approaches and advances in the field for the prediction of stall and surge problem in compressor. This book is useful for people involved in the flow analysis, design and testing of rotating machinery. For students, it can be used as a specialized topic of senior undergraduate or graduate study. The book can also be served as a self-study material to those who keen to acquire this knowledge. In brief, this book focuses on the numerical/computational analysis for the effect of distorted inlet flow propagation on the rotating stall and surge in axial compressors. It gains insight into the basic phenomena controlling these flow instabilities, and reveals the influence of inlet parameters on rotating stall and surge. The book starts from the confirmation and application of Kim et al's integral method and then follows by a development to this method through the proposing and applying a critical distortion line. This line is applied successfully on the stall prediction of in-flight compressor due to flamming of refueling leakage near inlet, a typical real and interesting example of compressor stall and surge operation. Further, after a parametric study on the integral method and the distorted flow field of compressor using Taguchi method, a novel integral method is formulated using more appropriate and practical airfoil characteristics, with a less assumptions needed for derivation. Finally, as an extended work, the famous Greitzer's instability flow model, the well-known B-parameter model applied for analyzing the stall and surge characteristics, is studied parametrically using Taguchi method.


Book
CFD Modelling and Simulation of Water Turbines
Authors: ---
ISBN: 3036560165 3036560157 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The design and development of water turbines requires accurate methods for performance prediction. Numerical methods and modelling are becoming increasingly important tools to achieve better designs and more efficient turbines, reducing the time required in physical model testing. This book is focused on applying numerical simulations and models for water turbines to predict tool their performance. In this Special Issue, the different contributions of this book are classified into three state-of-the-art Topics: discussing the modelling of pump-turbines, the simulation of horizontal and vertical axis turbines for hydrokinetic applications and the modelling of hydropower plants. All the contributions to this book demonstrate the importance of the modelling and simulation of water turbines for hydropower energy. This new generation of models and simulations will play a major role in the global energy transition and energy crisis, and, of course, in the mitigation of climate change.


Book
Mathematical Modelling of Energy Systems and Fluid Machinery
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ongoing digitalization of the energy sector, which will make a large amount of data available, should not be viewed as a passive ICT application for energy technology or a threat to thermodynamics and fluid dynamics, in the light of the competition triggered by data mining and machine learning techniques. These new technologies must be posed on solid bases for the representation of energy systems and fluid machinery. Therefore, mathematical modelling is still relevant and its importance cannot be underestimated. The aim of this Special Issue was to collect contributions about mathematical modelling of energy systems and fluid machinery in order to build and consolidate the base of this knowledge.


Book
CFD Based Researches and Applications for Fluid Machinery and Fluid Device
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demand for computational fluid dynamics (CFD)-based numerical techniques is increasing rapidly with the development of the computing power system. These advanced CFD techniques are applicable to various issues in the industrial engineering fields and especially contribute to the design of fluid machinery and fluid devices, which have very complicated unsteady flow phenomena and physics. In other words, to aid the rapid development of CFD techniques, the performances of fluid machinery and fluid devices with complicated unsteady flows have been enhanced significantly. In addition, many persistently troublesome problems of fluid machinery and fluid devices such as flow instability, rotor–stator interaction, surging, cavitation, vibration, and noise are solved clearly using advanced CFD techniques.This Special Issue on “CFD-Based Research and Applications for Fluid Machinery and Fluid Devices” aims to present recent novel research trends based on advanced CFD techniques for fluid machinery and fluid devices. The following topics, among others, are included in this issue:- CFD techniques and applications in fluid machinery and fluid devices;- Unsteady and transient phenomena in fluid machinery and fluid devices;- Pumps, fans, compressors, hydraulic turbines, pump turbines, valves, etc.

Keywords

centrifugal fan --- noise characteristics --- power consumption --- negative pressure --- sound pressure --- mechanical seal --- dynamic characteristics --- extrusion fault --- numerical simulation --- sealing performance --- fluent --- inducer --- step casing --- varying pitch --- cavitating flow and instabilities --- partial similarity principle --- flow similarity --- stability improvement --- multi-condition optimization --- cavitation performance --- artificial neural networks (ANN) --- net positive suction head (NPSH) --- double suction --- cascade --- aerodynamic --- parameterization --- plane cascade design --- incidence angle --- PSO-MVFSA --- optimization --- two-vane pump --- Computational Fluid Dynamics (CFD) --- Reynolds-averaged Navier-Stokes (RANS) --- machine learning --- energy recovery --- pump as turbine --- vortex --- hydraulic losses --- pressure fluctuation --- transient characteristics --- centrifugal pump --- startup period --- solar air heater --- ribs --- Nusselt number --- friction factor --- Reynolds-averaged Navier–Stokes equations --- thrust coefficient --- power coefficient --- figure of merit --- frozen rotor --- UAV --- octorotor SUAV --- aerodynamic performance --- rotor spacing --- hover --- CFD --- vortices distribution --- shape optimization --- Francis turbine --- fixed flow passage --- flow uniformity --- blade outlet angle --- Sirocco fan --- URANS --- volute tongue radius --- internal flow --- noise --- film cooling --- large eddy simulation --- triple holes --- blowing ratio --- adiabatic film-cooling effectiveness --- proper orthogonal decomposition --- axial compressor --- tip clearance --- flow field --- clearance --- flow function --- gas turbine --- leakage --- pressure ratio --- stepped labyrinth seal --- axial-flow pump --- root clearance radius --- computational fluid dynamics --- entropy production --- energy dissipation --- vortex pump --- lateral cavity --- open-design --- spiral flow --- reactor coolant pump (RCP) --- waviness --- leakage rate --- liquid film --- axial fan --- reversible --- jet --- design --- thrust --- energy characteristics --- mixing --- pitched blade turbine --- impeller --- inverse design method --- matching optimization --- diffuser --- small hydropower --- tubular turbine --- fish farm --- performance test --- design factors --- optimum model --- the mixed free-surface-pressurized flow --- characteristic implicit method --- relative roughness --- vent holes --- optimization control --- microchannel heat sink --- wavy microchannel --- groove --- heat transfer performance --- laminar flow --- multi-objective optimization --- LHS --- full factorial methods --- pump-turbine --- dynamic stress --- start-up process --- vortex generator (VG) --- computational fluid dynamics (CFD) --- cell-set model --- RANS --- LES --- multistage centrifugal pump --- double-suction impeller --- twin-volute --- inducer-type guide vane --- trailing edge flap (TEF) --- trailing edge flap with Micro-Tab --- deflection angle of the flap (αF) --- n/a --- Reynolds-averaged Navier-Stokes equations

Listing 1 - 6 of 6
Sort by