Narrow your search

Library

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

VIVES (7)

Vlaams Parlement (7)

UGent (1)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (3)

2020 (3)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Photocatalytic Hydrogen Evolution
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.


Book
Materials and Processes for Photocatalytic and (Photo)Electrocatalytic Removal of Bio-Refractory Pollutants and Emerging Contaminants from Waters
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water pollution from biorefractory pollutants and emerging contaminants is still a very relevant problem worldwide. Examples of these pollutants include disinfection by-products, pharmaceutical and personal care products, persistent organic chemicals, as well as their degradation products. The occurrence of these contaminants in water has raised increasing concern due to their accumulation and persistence in the environment and the threat they pose to the ecological system and human health. In this Special Issue, papers regarding the advancements in materials and processes for use in the electro- and photoelectrochemical removal of different pollutants from water are collected. The synthesis, characterization and application of materials for use in electrochemical or photoelectrochemical techniques are presented, as well as studies concerning catalytic processes and reaction kinetics.


Book
Light-Addressing and Chemical Imaging Technologies for Electrochemical Sensing
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Visualizing chemical components in a specimen is an essential technology in many branches of science and practical applications. This book deals with electrochemical imaging techniques based on semiconductor devices with capability of spatially resolved sensing. Two types of such sensing devices have been extensively studied and applied in various fields, i.e., arrayed sensors and light-addressed sensors. An ion-sensitive field-effect transistor (ISFET) array and a charge-coupled device (CCD) ion image sensor are examples of arrayed sensors. They take advantage of semiconductor microfabrication technology to integrate a large number of sensing elements on a single chip, each representing a pixel to form a chemical image. A light-addressable potentiometric sensor (LAPS), on the other hand, has no pixel structure. A chemical image is obtained by raster-scanning the sensor plate with a light beam, which can flexibly define the position and size of a pixel. This light-addressing approach is further applied in other LAPS-inspired methods. Scanning photo-induced impedance microscopy (SPIM) realized impedance mapping and light-addressable electrodes/light-activated electrochemistry (LAE) realized local activation of Faradaic processes. This book includes eight articles on state-of-the-art technologies of light-addressing/chemical imaging devices and their application to biology and materials science.


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Mesoporous Metal Oxide Films
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.


Book
Thin Films for Energy Harvesting, Conversion, and Storage
Authors: --- ---
ISBN: 3039217259 3039217240 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.


Book
New Trends in Photo(Electro)catalysis : From Wastewater Treatment to Energy Production
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on new trends in photo-electrocatalysis, specifically addressed to the remediation of wastewater and energy production. The remediation of wastewater, up to a level that is acceptable for discharge into receiving waterbodies, involves an ever-growing demand of energy, so effective and low-energy treatment processes are highly desirable. Among the other treatments, photo- and photo-electrochemical treatment processes may be considered as advanced oxidation processes (AOP), which are based on the generation of OH radicals, strong oxidizing agents able to indiscriminately degrade even the most persistent organic compounds. Photocatalysis and photo-electrocatalysis can be considered as effective methods for organic degradation, especially when the semiconductor is active in the range of visible light. Several results are presented on new morphologies and structures, which allow more photoactive, visibly responsive, and stable materials, as well as studies on combined processes in which photo- or photo-electrochemistry contribute to an increase in the sustainability of the whole process, lowering costs and achieving the most valuable final products. In view of the circular economy concept, microbial fuel cell systems are also considered as possible way to recover energy from organic pollutants contained in wastewater.

Keywords

composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu–B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni–Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties --- n/a --- Cu-B alloy --- Ni-Co catalyst

Listing 1 - 7 of 7
Sort by