Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This introduction into the multidisciplinary area of optofluidics offers the necessary foundations in photonics, polymer physics and process analytics to students, engineers and researchers to enter the field. All basic ingredients of a polymer-based platform as a foundation for quick and compact solutions for chemical, biological and medical sensing and manipulation are developed.
Choose an application
Optofluidics is a niche research field that integrates optics with microfluidics. It started with elegant demonstrations of the passive interaction of light and liquid media, such as liquid waveguides and liquid tunable lenses. Advances continue to be made in liquid-based optical devices/systems. In addition, it has expanded rapidly into many other fields that involve lightwave (or photon) and liquid media. This Special Issue invites review articles (only review articles) that provide updates on the latest progress of the optofluidics in various aspects, such as new functional devices, new integrated systems, new fabrication techniques, new applications, etc. It will cover, but is not limited to, topics such as micro-optics in liquid media, optofluidic sensors, integrated micro-optical systems, displays, optofluidics-on-fibers, optofluidic manipulation, energy and environmental applications, and so on.
Optofluidics. --- Fluidics --- Photonics
Choose an application
Advanced Photonics Research is an international Open Access journal that publishes peer-reviewed articles presenting novel, significant and high-quality results in all areas of the thriving field of photonics and optics. Topics range from fundamental research in theory and experiment to applications, devices and systems, both in established and emerging fields. The journal aims to provide an international forum for communication through articles that advance photonics research in optics, physics, biophotonics, electrooptics, quantum photonics, on-chip photonics, nanophotonics, optofluidics, and engineering.
Photonics --- Photonics. --- New optics --- Optics --- photonics --- optics --- biophotonics --- electrooptics --- optofluidics
Choose an application
Optofluidics. --- Laser photochemistry. --- Laser chemistry --- Laser-induced chemistry --- Photochemistry --- Fluidics --- Photonics
Choose an application
The study and application of microscale lenses and lens arrays enjoys a long history. Advances in microfabrication technologies in the past few decades have enabled the design and fabrication of microlenses and microlens arrays through many different approaches. In recent years, there has been notably a host of exciting developments in the microlenses and microlens arrays, including tunable-focus ones, those fabricated on non-planar substrates and surfaces, and microlens arrays mimicking natural compound eyes, to name just a few. The developments in microlenses and microlens arrays have found profound applications in many engineering and biomedical fields, including but not limited to optical coherence tomography (OCT), endoscopy, photolithography, 3-dimensional imaging, optical communications, and lab on chips. This Special Issue aims to highlight the state of the art in the development of microlenses and microlens arrays; examples being fabrication technologies and optical characterizations. It also focuses on their applications when implemented in microoptical systems.
microcamera --- polymer --- variable-focus microlens --- electrowetting --- flexible substrate --- optical characterization --- micro imaging system --- artificial compound eye --- optical aberration --- microoptics --- liquid microlens --- photolithography --- optofluidics --- optical MEMS --- dielectrophoresis --- tunable-focus microlens --- microscopy --- fill factor --- focal length --- microlens --- liquid crystal --- microlens array --- Microfluidics. --- Fluidics --- Nanofluids
Choose an application
Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensional microfludics, micromechanics, microelectronics, and microoptics embedded in the glass. Further, these microcomponents can be easily integrated in a single glass microchip by the simple procedure using the femtosecond laser. Thus, the femtosecond laser processing provides some advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabrication of microfludic, optofludic, and lab-on-a-chip devices, and thereby many researches on this topic are currently being carried out. This book presents a comprehensive review on the state of the art and future prospects of femtosecond laser processing for fabrication of microfludics and optofludics including principle of femtosecond laser processing, detailed fabrication procedures of each microcomponent, and practical applications to biochemical analysis.
Femtosecond lasers. --- Laser ablation. --- Ablation, Laser --- Laser-induced ablation --- Engineering. --- Nanotechnology. --- Optical materials. --- Electronic materials. --- Nanotechnology and Microengineering. --- Optics, Lasers, Photonics, Optical Devices. --- Optical and Electronic Materials. --- Electronic materials --- Optics --- Materials --- Molecular technology --- Nanoscale technology --- High technology --- Construction --- Industrial arts --- Technology --- Lasers --- Manufacturing processes --- Industrial applications --- Lasers. --- Photonics. --- New optics --- Light amplification by stimulated emission of radiation --- Masers, Optical --- Optical masers --- Light amplifiers --- Light sources --- Optoelectronic devices --- Nonlinear optics --- Optical parametric oscillators --- Microfluidics. --- Optofluidics.
Choose an application
Optofluidic devices are of high scientific and industrial interest in chemistry, biology, material science, pharmacy, and medicine. In recent years, they have experienced strong development because of impressive achievements in the synergistic combination of photonics and micro/nanofluidics. Sensing and/or lasing platforms showing unprecedented sensitivities in extremely small analyte volumes, and allowing real-time analysis within a lab-on-a-chip approach, have been developed. They are based on the interaction of fluids with evanescent waves induced at the surface of metallic or photonic structures, on the implementation of microcavities to induce optical resonances in the fluid medium, or on other interactions of the microfluidic systems with light. In this context, a large variety of optofluidic devices has emerged, covering topics such as cell manipulation, microfabrication, water purification, energy production, catalytic reactions, microparticle sorting, micro-imaging, or bio-sensing. Moreover, the integration of these optofluidic devices in larger electro-optic platforms represents a highly valuable improvement towards advanced applications, such as those based on surface plasmon resonances that are already on the market. In this Special Issue, we invited the scientific community working in this rapidly evolving field to publish recent research and/or review papers on these optofluidic devices and their applications.
opto-fluidics --- micro-manipulation --- cells --- microparticles --- electrowetting display --- aperture ratio --- driving waveform --- hysteresis characteristic --- ink distribution --- response speed --- optofluidics --- ocean monitoring --- colorimetric method --- optoelectrokinetics --- optically-induced dielectrophoresis --- micro/nanomaterials --- separation --- fabrication --- electro-fluidic display --- organic dye --- colored oil --- photo-stability --- micro-thermometry --- laser induced fluorescence --- droplet microfluidics --- zinc oxide --- rhodamine B --- rhodamine 6G --- photocatalysis --- microreactor --- photocatalytic water purification --- paper --- 3D hydrodynamic focusing --- optofluidic --- lab-on-a-chip --- biosensor --- microscale channel --- microfluidic --- liquid-core waveguide --- single layer --- reservoir effect --- sensor --- surface plasmon resonance --- nanohole array --- mechanical properties --- nanofluidic --- nanoplasmonic --- dissolved oxygen --- silver nanoprisms --- colorimetry --- n/a
Choose an application
Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.
enhanced boiling heat transfer --- microfluidic devices --- thermal insulation --- fibers --- lab-on-a-chip --- precision glass molding --- device simulations --- spray pyrolysis technique --- dielectric materials --- detection of small molecules --- roughness --- direct metal forming --- micro-grinding --- MEMS --- chalcogenide glass --- whispering gallery mode --- down-shifting --- glass --- optofluidic microbubble resonator --- luminescent materials --- filling ratio --- 2D colloidal crystal --- waveguides --- micro-crack propagation --- fluid displacement --- biosensors --- freeform optics --- microstructured optical fibers --- laser micromachining --- polymeric microfluidic flow cytometry --- luminescence --- frequency conversion --- light --- micro/nano patterning --- resonator --- fiber coupling --- distributed sensing --- severing force --- microsphere --- alkali cells --- microfabrication --- hybrid materials --- enclosed microstructures --- infrared optics --- glassy carbon micromold --- Ag nanoaggregates --- microfluidics --- chemical/biological sensing --- porous media --- atomic spectroscopy --- quartz glass --- solar energy --- diffusion --- soft colloidal lithography --- groove --- compound glass --- metallic microstructure --- whispering gallery modes --- sol-gel --- communications --- femtosecond laser --- optofluidics --- europium --- aspherical lens --- long period grating --- optical cells --- polymers --- lasing --- photovoltaics --- microresonator --- sensing --- microspheres --- light localization --- Yb3+ ions --- laser materials processing --- photonic microdevices --- MEMS vapor cells --- microtechnology --- ultrafast laser micromachining --- photon --- single-cell protein quantification --- strain microsensor --- label-free sensor --- microdevices --- ultrafast laser welding --- nuclear fusion --- vectorial strain gauge --- single-cell analysis --- glass molding process
Choose an application
Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future.
optical --- electric-field --- sensor --- measurement --- transient voltage --- AC power grid --- Pockels effect --- dermatoscopy --- skin screening --- biomedical imaging --- fiber optic sensor --- Sagnac loop --- intensity-modulated --- DWDM --- strain sensor --- structural health monitoring (SHM) --- functionalized carbon structure (FCS) --- carbon reinforced concrete (CRC) --- fiber optic sensor (FOS) --- optical glass fiber --- wavefront sensor --- spatial light modulator --- contour-sum method --- topological charge --- orbital angular momentum --- optical coherence tomography --- Monte Carlo simulation --- structural imaging --- functional sensing --- optical scatterometry --- inverse problem --- profile reconstruction --- dependence analysis --- data refinement --- electro-optic dual-comb interferometry --- laser Doppler velocimetry --- Traceability --- sub-nanosecond laser --- high peak power --- Nd:YVO4 --- stimulated Raman scattering (SRS) --- thermal fracture --- wireless NoC (WiNoC) --- graphene based WiNoCs (GWiNoCs) --- wireless nanosensor networks (WNSNs) --- surface plasmon polariton (SPP) --- GFET --- multiple-input-multiple-output (MIMO) --- graphennas --- THz transceiver --- Mode Division Multiplexing (MDM) --- Few-Mode Fiber (FMF) --- principle mode groups (PMG) --- Bragg grating (BG) --- multi-mode fiber bragg grating --- multi-parameter sensing --- DAS --- fiber optic sensing --- train tracking --- pattern recognition --- hybrid lens --- optical wireless communications --- Li-Fi --- freeform lens --- optic design --- rotary interfaces --- rotary joint --- wireless rotary electrical interface --- rotating electrical connectors --- full-duplex data transfer --- Gigabit-Ethernet --- industrial communications --- real-time --- pathogen detection --- microfluidics --- image processing --- computational algorithms --- integrated optics and photonics --- integrated polymer optics --- organic laser --- integration --- polymeric waveguide --- Lab-on-a-Chip --- fiber optical sensing --- biosensing --- optofluidics --- integrated optics and photoncis --- optical analytics --- medical imaging and diagnostics --- optical communication technology --- distributed sensing
Listing 1 - 9 of 9 |
Sort by
|