Narrow your search

Library

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

VIVES (5)

FARO (4)

Vlaams Parlement (4)

ULB (1)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (2)

2021 (1)

2020 (1)

2006 (1)

Listing 1 - 5 of 5
Sort by
Powder Diffraction : The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data
Author:
ISBN: 1280460415 9786610460410 3540279865 3540279857 3642066267 Year: 2006 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Crystal structure analysis from powder diffraction data has attracted considerable and ever growing interest in the last decades. X-ray powder diffraction is best known for phase analysis (Hanawalt files) dating back to the 30s. In the late 60s the inherent potential of powder diffraction for crystallographic problems was realized and scientists developed methods for using powder diffraction data at first only for the refinement of crystal structures. With the development of ever growing computer power profile fitting and pattern decomposition allowed to extract individual intensities from overlapping diffraction peaks opening the way to many other applications, especially to ab initio structure determination. Powder diffraction today is used in X-ray and neutron diffraction, where it is a powerful method in neutron diffraction for the determination of magnetic structures. In the last decade the interest has dramatically improved. There is hardly any field of crystallography where the Rietveld, or full pattern method has not been tried with quantitative phase analysis the most important recent application.


Book
Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of the research articles and review article, published in special issue "Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application".


Book
Geological and Mineralogical Sequestration of CO2
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid increasing of concentrations of anthropologically generated greenhouse gases (primarily CO2) in the atmosphere is responsible for global warming and ocean acidification. The International Panel on Climate Change (IPCC) indicates that carbon capture and storage (CCS) techniques are a necessary measure to reduce greenhouse gas emissions in the short-to-medium term. One of the technological solutions is the long-term storage of CO2 in appropriate geological formations, such as deep saline formations and depleted oil and gas reservoirs. Promising alternative options that guarantee the permanent capture of CO2, although on a smaller scale, are the in-situ and ex-situ fixation of CO2 in the form of inorganic carbonates via the carbonation of mafic and ultramafic rocks and of Mg/Ca-rich fly ash, iron and steel slags, cement waste, and mine tailings. According to this general framework, this Special Issue collects articles covering various aspects of recent scientific advances in the geological and mineralogical sequestration of CO2. In particular, it includes the assessment of the storage potential of candidate injection sites in Croatia, Greece, and Norway; numerical modelling of geochemical–mineralogical reactions and CO2 flow; studies of natural analogues providing information on the processes and the physical–chemical conditions characterizing serpentinite carbonation; and experimental investigations to better understand the effectiveness and mechanisms of geological and mineralogical CO2 sequestration.


Book
Advanced Materials and Technologies for Fuel Cells
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.


Book
X-ray Diffraction of Functional Materials
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Demand for advanced X-ray scattering techniques has increased tremendously in recent years with the development of new functional materials. These characterizations have a huge impact on evaluating the microstructure and structure–property relation in functional materials. Thanks to its non-destructive character and adaptability to various environments, the X-ray is a powerful tool, being irreplaceable for novel in situ and operando studies. This book is dedicated to the latest advances in X-ray diffraction using both synchrotron radiation as well as laboratory sources for analyzing the microstructure and morphology in a broad range (organic, inorganic, hybrid, etc.) of functional materials.

Keywords

lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate)

Listing 1 - 5 of 5
Sort by