Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
Harvester ants. --- Harvester ants --- Invertebrates & Protozoa --- Zoology --- Health & Biological Sciences --- Agricultural ants --- Pogomyrmex --- Pogonomyrmex --- Ants
Choose an application
This book is a printed edition of the Special Issue “Energy Harvesters and Self-Powered Sensors for Smart Electronics” that was published in Micromachines, which showcases the rapid development of various energy harvesting technologies and novel devices. In the current 5G and Internet of Things (IoT) era, energy demand for numerous and widely distributed IoT nodes has greatly driven the innovation of various energy harvesting technologies, providing key functionalities as energy harvesters (i.e., sustainable power supplies) and/or self-powered sensors for diverse IoT systems. Accordingly, this book includes one editorial and nine research articles to explore different aspects of energy harvesting technologies such as electromagnetic energy harvesters, piezoelectric energy harvesters, and hybrid energy harvesters. The mechanism design, structural optimization, performance improvement, and a wide range of energy harvesting and self-powered monitoring applications have been involved. This book can serve as a guidance for researchers and students who would like to know more about the device design, optimization, and applications of different energy harvesting technologies.
energy harvesting --- vibration --- broadband --- resonant frequency --- piezoelectric vibration energy harvester --- low frequency --- wideband --- modeling --- energy harvester --- temperature threshold --- piezoelectricity --- vibrational cantilever --- bimetallic effect --- piezoelectric --- optimization --- pattern search --- FEM --- PZT --- electromagnetic --- hybrid energy harvester --- power density improvement --- piezoelectric energy harvester --- tandem --- vortex-induced vibration --- flowing water --- vibration energy harvesting --- electromagnetic generator (EMG) --- nonlinear --- magnetic coupling --- high performance --- diamagnetically stabilized levitation --- Taguchi method --- stable levitation --- maximum gap --- electromagnetic energy harvester --- human body kinetic energy --- n/a
Choose an application
Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented.
piezoelectric harvester --- orthoplanar spring --- trapezoidal leg --- vibration energy --- acoustic resonance --- closed side branch --- DDES --- wind energy harvester --- Autonomous Internet of Things --- vibration energy harvesting --- electromagnetic–mechanical modeling --- autonomous sensors --- self-powered device --- battery-less modules --- energy harvesting --- Wiegand sensor --- self-oscillating boost converter --- power management --- connected vehicles --- smart cities --- electric vehicle --- IoT --- Tesla --- triboelectric nanogenerators --- ocean wave --- artificial intelligence --- structural health monitoring --- TEG --- thermoelectricity --- thermal energy harvesting --- tracker --- wildlife --- animal --- ultra low power --- 3D printed --- vibration harvester --- electromagnetic --- hybrid --- photovoltaics --- solar panel --- highway --- urban street --- experimental investigation --- water --- solar still --- absorber --- silicon --- temperature --- dual resonance frequencies --- vibration electromagnetic energy harvester --- wide harvested frequency range --- enhanced “band-pass” harvested power --- independent resonant frequencies --- autonomous wireless sensor --- passive energy management --- weak vibration --- electromagnetic converter --- wideband --- planar spring --- voltage multiplier --- rectifier --- predictive maintenance --- failure detection --- WSN --- n/a --- electromagnetic-mechanical modeling --- enhanced "band-pass" harvested power
Choose an application
As users, we require more and more reliable and longer operation of electronic devices. Most often, the efforts of scientists and engineers related to energy management, energy conversion, and energy storage are overlooked. The PowerMEMS slogan in its meaning hides the science of materials enabling the construction of modern accumulators and batteries, so important for the developing consumer electronics and electromobility; energy harvesters used wherever conventional power sources cannot be used; and finally the methods and algorithms of energy processing and management that increase the efficiency of the devices they operate. This Special Issue contains six research papers selected from those presented at the 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2019), as and representative of all papers presented during the Conference.
coils --- wireless power transfer --- electrically small antennas --- e-textiles --- internet of things --- wireless energy harvesting --- thermoelectrics --- GeTe --- LiI as dopant --- enhanced power factor --- suppressed thermal transport --- triboelectric nanogenerator (TENG) --- mechanical energy harvesting --- single-electrode --- tapping --- flexibility --- porous/rough PDMS --- parylene C --- hermetic packaging --- IoT --- MEMS --- microbattery --- battery --- harvester --- tracker --- wildlifetracking --- heat flux --- thermal resistance --- thermal conductance --- thermal energy harvesting --- endothermic animal --- fur --- 3D printing --- energy harvester
Choose an application
Kinetic energy harvesters are a viable means of supplying low-power autonomous electronic systems for the remote sensing of operations. In this Special Issue, through twelve diverse contributions, some of the contemporary challenges, solutions and insights around the outlined issues are captured describing a variety of energy harvesting sources, as well as the need to create numerical and experimental evidence based around them. The breadth and interdisciplinarity of the sector are clearly observed, providing the basis for the development of new sensors, methods of measurement, and importantly, for their potential applications in a wide range of technical sectors.
energy harvester --- electromagnetic --- real vibration --- nonlinearities --- piezoelectric energy harvesting --- triboelectric energy harvesting --- low-frequency vibration energy harvesting --- direct-force generator --- vibration --- frequency-up conversion --- PVDF patches --- structural health monitoring --- sensing --- energy harvesting --- pipe leak detection --- computational fluid dynamics --- optimum sensor distribution --- electromagnetic energy harvester --- bi-stable oscillator --- load resistance optimization --- frequency response analysis --- harmonic balance method --- piezoelectric --- piezoelectric ceramic --- lead zirconate titanate (PZT) --- polyvinylidene fluoride (PVDF) --- efficiency --- efficiency measurement --- power conversion --- power flow --- vibrations --- analytical model --- beam model --- equivalent model --- power prediction --- Structural Health Monitoring --- damage detection --- macro fiber composites (MFC) --- damage sensitive feature --- finite element method (FEM) --- vibration energy-harvesting system --- hysteretic effect --- bistable oscillator --- bifurcation --- train --- electromagnetic transducer --- model --- test --- wireless sensor --- SMART materials --- magnetostriction --- Terfenol-D --- smart materials --- wireless sensors --- ultrasonic system --- n/a
Choose an application
The papers published in this Special Issue “WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability” bring together some of the latest research results in the field of biomass valorization and the process of energy production and climate change and other areas relevant to energetic sustainability [1–20]. Moreover, several works address the very important topic of evaluating the safety aspects for energy plant use [21–24]. Responses to our call generated the following statistics:• Submissions (21);• Publications (15);• Rejections (6);• Article types: research articles (13), reviews (2). Of the submitted papers, 15 have been successfully published as articles. Reviewing and selecting the papers for this Special Issue was very inspiring and rewarding. We also thank the editorial staff and reviewers for their efforts and help during the process. For better comprehension, the contributions to this Special Issue are divided into sections, as follows.
biomass waste --- gasification --- power generation --- internal combustion engine --- CHP --- Aspen Plus --- rotary dryer --- drying process --- thermal energy --- wood chips --- life cycle analysis --- environmental valuation --- biochar --- willow --- pig manure --- renewable energy --- biomass --- olive pomace --- combustion --- ORC --- working fluid --- beet tops --- rotary cutting device --- tractor --- oscillations --- differential equations --- optimal parameters --- biomass production --- greenhouse --- multiple environmental parameters --- interactive optimization scheme --- spatial distributed factors --- online–offline strategy --- CFD-EA --- chipping --- pellet --- poplar --- SRWC --- pelletization --- biomass quality --- energy quality --- horse skidding --- winch skidding --- cable yarder --- life cycle assessment --- societal assessment --- economic assessment --- multi-criteria decision analysis --- sustainable forest management --- innovation --- agriculture --- forestry --- energy --- sustainability --- updraft --- syngas --- oxidizing agent --- energy saving --- efficiency --- controlled environment --- agricultural residues --- market --- anaerobic digestion --- global warming potential --- externalities --- compost --- woody pellet --- agropellet --- quality --- standards --- blending --- sugar beet --- beet top cutting --- tractor–harvester aggregate --- n/a --- online-offline strategy --- tractor-harvester aggregate
Choose an application
This book focused on researching food loss and waste in various agricultural supply chains, searching for reduction strategies and possible technological solutions without neglecting the relevance of the socioeconomic factors that influence the functioning of food value chains. The adoption of the 2030 Agenda for Sustainable Development (Goal 12—“Ensure sustainable consumption and production patterns”) calls for renewed efforts to reduce food losses along production and supply chains. Achieving this goal will require greater efforts globally to implement food loss reduction policies and interventions. In addition, the sustainable management and use of byproducts from agriculture, including agricultural residues, has been analyzed. Special attention is given to pre- and post-harvesting losses of agricultural products, including the assessment of their environmental and economic sustainability.
Technology: general issues --- Environmental science, engineering & technology --- biomass --- bioenergy --- straw --- combine harvester --- chaff --- by-product --- bioeconomy --- life cycle assessment --- life cycle costing --- Ricinus communis, L. --- castor oil --- harvesting --- residue management --- biopreservatives --- shelf life --- essential oil --- organic foods --- consumers’ attitude --- willingness to pay --- work productivity --- harvesting costs --- harvesting efficiency --- wheat header --- seed loss --- header impact --- ecoefficiency --- life cycle assessment (LCA) --- life cycle costing (LCC) --- run-off --- pond --- flexible water storage system --- Cynara roots --- biorefinery --- marginal lands --- multipurpose crop --- fermentable sugars --- agricultural residues exploitation --- postharvest losses --- food waste --- physicochemical properties --- table grape --- shelf-life --- decay --- stem browning --- SO2 damage --- socioeconomic impacts --- pomegranate --- losses --- nutrition --- environmental --- resources --- packhouse --- postharvest --- impacts --- Technology. --- Engineering. --- Environmental science. --- Environmental sciences.
Choose an application
This reprint is a collection of the Special Issue "Advance in Energy Harvesters/Nanogenerators and Self-Powered Sensors" published in Nanomaterials, which includes one editorial, six novel research articles and four review articles, showcasing the very recent advances in energy-harvesting and self-powered sensing technologies. With its broad coverage of innovations in transducing/sensing mechanisms, material and structural designs, system integration and applications, as well as the timely reviews of the progress in energy harvesting and self-powered sensing technologies, this reprint could give readers an excellent overview of the challenges, opportunities, advancements and development trends of this rapidly evolving field.
Technology: general issues --- History of engineering & technology --- Energy industries & utilities --- bacteriorhodopsin --- photoelectric conversion --- bioelectronics --- nanopore --- microfluidic --- As(III) detection --- electrochemical sensing --- nanosensing --- biosensing --- energy harvesting --- triboelectric mechanism --- electrostatic mechanism --- human motion status monitoring --- IZTO/β-Ga2O3 Schottky diode --- solar-blind --- self-powered --- photodetector --- modeling --- triboelectric --- piezoelectric --- electromagnetic --- hybrid --- implantable biomedical devices --- triboelectric nanogenerator --- energy harvester --- self-powered biosensor --- nerve stimulation --- muscle stimulation --- resistance-switching --- green energy --- hybrid nanogenerators --- piezoelectric nanogenerator --- thermoelectric nanogenerators --- vibration energy harvesting --- hybrid generators --- triboelectric displacement sensors --- triboelectric acceleration sensors --- Ag2O/β-Ga2O3 --- heterojunction --- deep ultraviolet --- post-annealing --- n/a
Choose an application
Advances in miniaturization of sensors, actuators, and smart systems are receiving substantial industrial attention, and a wide variety of transducers are commercially available or with high potential to impact emerging markets. Substituting existing products based on bulk materials, in fields such as automotive, environment, food, robotics, medicine, biotechnology, communications, and other technologies, with reduced size, lower cost, and higher performance, is now possible, with potential for manufacturing using advanced silicon integrated circuits technology or alternative additive techniques from the mili- to the nano-scale. In this Special Issue, which is focused on piezoelectric transducers, a wide range of topics are covered, including the design, fabrication, characterization, packaging, and system integration or final applications of mili/micro/nano-electro-mechanical systems based transducers.
cylindrical composite --- piezoceramic/epoxy composite --- electromechanical characteristics --- transducer --- piezoelectric actuators --- positioning --- trajectory control --- numerical analysis --- trajectory planning --- square piezoelectric vibrator --- resonance --- piezoelectric diaphragm pump --- flexible support --- piezoelectric resonance pump --- piezoelectric ceramics actuators --- hysteresis modeling --- Bouc–Wen model --- P-type IL --- MFA control --- SM control --- evidence theory --- active vibration control --- piezoelectric smart structure --- piezoelectric material --- multiphysics simulation --- finite element method (FEM) --- fluid–structure interaction (FSI) --- micro electromechanical systems (MEMS) --- traveling waves --- piezoelectric --- microactuator --- MEMS --- piezoelectric current sensing device --- two-wire power cord --- cymbal structure --- force amplification effect --- sensitivity --- ciliary bodies touch beam --- piezoelectric tactile feedback devices --- anisotropic vibration tactile model --- human factor experiment --- nondestructive testing --- maturity method --- concrete early-age strength --- SmartRock --- ultrasonic waves --- PZT (piezoelectric) sensors --- structural health monitoring --- AlN thin film --- piezoelectric effect --- resonant accelerometer --- z-axis --- debonding --- non-destructive testing --- electromechanical impedance --- damage detection --- impedance-based technique --- damage depth --- piezoelectric vibration energy harvester --- frequency up-conversion mechanism --- impact --- PZT thick film --- piezoelectric ceramic materials --- Duhem model --- hysteresis model --- class-C power amplifier --- diode expander --- piezoelectric transducers --- point-of-care ultrasound systems --- transverse impact --- frequency up-conversion --- piezoelectric bimorph --- human-limb motion --- hybrid energy harvester --- cascade-connected transducer --- low frequency --- small size --- finite element --- acoustic telemetry --- measurement while drilling --- energy harvesting --- pipelines --- underwater networks --- wireless sensor networks --- control algorithm --- waterproof --- coating --- reliability --- flexible micro-devices --- aqueous environments --- seawater --- capacitive pressure sensors --- in-situ pressure sensing --- sensor characterization --- physiological applications --- cardiac output --- aluminum nitride --- resonator --- damping --- quality factor --- electromechanical coupling --- implantable middle ear hearing device --- piezoelectric transducer --- stimulating site --- finite element analysis --- hearing compensation --- adaptive lens --- piezoelectric devices --- fluid-structure interaction --- moving mesh --- thermal expansion --- COMSOL --- petroleum acoustical-logging --- piezoelectric cylindrical-shell transducer --- center-frequency --- experimental-measurement --- piezoelectricity --- visual servo control --- stepping motor --- nano-positioner --- stick-slip --- piezoelectric energy harvester --- cut-in wind speed --- cut-out wind speed --- energy conservation method --- critical stress method --- piezoelectric actuator --- lever mechanism --- analytical model --- stick-slip frication --- nanopositioning stage --- piezoelectric hysteresis --- mark point recognition --- piecewise fitting --- compensation control --- piezo-electromagnetic coupling --- up-conversion --- vibration energy harvester --- multi-directional vibration --- low frequency vibration --- hysteresis compensation --- single-neuron adaptive control --- Hebb learning rules --- supervised learning --- vibration-based energy harvesting --- multimodal structures --- frequency tuning --- nonlinear resonator --- bistability --- magnetostatic force --- robot --- miniature --- traveling wave --- leg --- piezoelectric actuators (PEAs) --- asymmetric hysteresis --- Prandtl–Ishlinskii (PI) model --- polynomial-modified PI (PMPI) model --- feedforward hysteresis compensation --- PIN-PMN-PT --- 1-3 composite --- high frequency --- phased array --- n/a --- Bouc-Wen model --- fluid-structure interaction (FSI) --- Prandtl-Ishlinskii (PI) model
Choose an application
Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed.
normalized difference vegetation index (NDVI) --- SRTMGL1 --- SPOT-6 --- urban ecology --- terrestrial laser scanner --- Lantana camara --- terrestrial laser scanning --- harvester --- product recovery --- imputation --- optimization --- multi-spectral --- function --- ZiYuan-3 stereo images --- spatial noise --- 3D remote sensing --- tree measurement --- diameter at breast height (DBH) --- DSM --- metabolic scale theory --- municipal forestry --- digital photogrammetry --- Norway spruce --- missing observations --- interrater agreement --- measurement error --- stump height --- Fractional cover analysis --- google earth engine --- high-voltage power transmission lines --- habitat fragmentation --- codispersion coefficient --- forest fire --- tree height --- nu SVR --- RapidEye --- uneven-aged mountainous --- random Hough transform --- kriging --- street trees --- ground validation --- Google Street View --- laser --- species identification --- composition --- maximum forest heights --- mountainous areas --- landscape fragmentation --- Landsat 8 --- forest canopy height --- allometric scaling and resource limitation model --- urban forestry --- point cloud --- GSV --- stump diameter --- structure --- 3D --- codispersion map --- forest ecology --- polarimetery --- crowdsourced data
Listing 1 - 10 of 14 | << page >> |
Sort by
|