Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
Golfers --- Grout, Jack. --- Nicklaus, Jack.
Choose an application
Grout (Mortar) --- Grouting (Soil stabilization) --- Sealing (Technology) --- Construction equipment --- Compaction grouting --- Grouting --- Jet grouting --- Low mobility grouting --- Pressure grouting --- Concrete construction --- Soil compaction --- Soil stabilization --- Builders' plant --- Building equipment --- Building machinery --- Construction industry --- Construction machinery --- Building --- Machinery --- Bonding (Technology) --- Coating processes --- Cement grout --- Mortar --- Materials --- Materials. --- Maintenance and repair --- Equipment and supplies
Choose an application
The recovery of solid wastes for the preparation of innovative composite materials not only represents an economic advantage, but also offers an ecological opportunity for the utilization of by-products which would otherwise be landfilled. Specifically, the reuse and recycling of waste lead to important savings of raw materials and energy, since these by-products, generally deriv from agricultural or industrial activities, are abundant in nature. Moreover, a reduction of the environmental and related sanitary impacts can be also achieved. For this reason, a recycling operation is fundamental for the improvement of the environmental sustainability, because these secondary raw materials become a resource that can be easily reused without the modification of the peculiar characteristics, in order to obtain new and performing composites, with a low specific weight, high durability, and long life cycle.
Radioactive soil waste --- Gd2Ti2O7 pyrochlore --- SHS --- CeO2 --- Immobilization --- cementitious grout --- green grout --- cement --- slag substitution --- valorization --- circular economy --- cellulose aerogel --- oil absorbent --- cellulose --- white bamboo fibril --- water pollution --- natural rubber --- nanosilica --- mechanical property --- fertilizer plant --- hexafluorosilicic acid --- waste water --- cement composites --- recycled waste porous glass --- end-of-life tyre rubber --- safe production --- thermal insulation --- mechanical resistance --- render --- cement and cement-lime reinforced mortars --- natural fiber --- sheep’s wool --- sustainability --- chitosan film --- emerging pollutants --- ketoprofen --- food waste --- adsorption --- recycle --- recycled expanded polystyrene --- cement mortars --- eggshell --- Direct Blue 78 --- kinetics --- isotherms --- pulsed light --- fiber reinforced --- cementless composites --- microscopic property --- co-fired fly ash --- green materials --- biochar --- wheat straw --- sorbent --- cobalt --- copper --- soil --- n/a --- sheep's wool
Choose an application
Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.
graphene oxide --- polyethylene glycol --- rheological characterization --- human milk --- tube feeding --- breastfeeding --- viscosity --- complex modulus --- density --- rheological measurements --- non-viscometric geometries --- Couette analogy --- shear thinning fluids --- suspensions --- bread --- whey --- complex fluids --- experimental rheology --- breadmaking --- yield stress --- grout --- polypropylene fiber --- masonry --- consolidation --- rheology --- drop impact --- elasto-viscoplastic material --- free surface --- gravitational effects --- MRSA --- S. aureus --- antibiotics --- oxacillin --- bactericidal --- injection molding --- filling stage --- Cross-WLF model --- Tait model --- finite volume method --- openInjMoldSim --- OpenFOAM® --- Boger fluids --- circular contraction flow --- lip vortex --- pressure-drops --- vortex-enhancement --- first normal-stress difference --- swIM model --- reactive extrusion --- data-driven --- machine learning --- artificial engineering --- polymer processing --- digital twin --- n/a
Choose an application
This Special Issue, entitled “Non-Destructive Testing in Civil Engineering”, aims to present to interested researchers and engineers the latest achievements in the field of new research methods, as well as the original results of scientific research carried out with their use—not only in laboratory conditions but also in selected case studies. The articles published in this Special Issue are theoretical–experimental and experimental, and also show the practical nature of the research. They are grouped by topic, and the main content of each article is briefly discussed for your convenience. These articles extend the knowledge in the field of non-destructive testing in civil engineering with regard to new and improved non-destructive testing (NDT) methods, their complementary application, and also the analysis of their results—including the use of sophisticated mathematical algorithms and artificial intelligence, as well as the diagnostics of materials, components, structures, entire buildings, and interesting case studies.
conveyor belt --- climatic factors --- thermal shocks --- mechanical properties --- applied geophysics --- urban geophysics --- Eleftheria Square --- ERT --- probability-based ERT inversion (PERTI) method --- GPR --- EMI --- impact-echo --- tooth gear impactor --- contact duration --- delamination --- rapid scanning --- non-destructive testing --- concrete slab --- building defects --- building diagnosis --- building envelope --- building inspection system --- urgency of repair --- historic buildings --- brick walls --- nondestructive testing --- artificial neural networks --- Nearly Zero Energy Buildings (NZEB) --- passive house (PH) --- heat flux meter (HFM) --- quantitative infrared thermography (QIRT) --- building thermal performance --- U-value --- Mediterranean climate --- electrical resistivity --- electrical impedance --- concrete --- mortar --- measurement accuracy --- ultrasonic elastography --- underground detection --- soil inspection --- underwater acoustics --- non-destructive test --- monitoring --- housing --- buildings --- façade --- thermal transmittance --- HFM method --- infrared thermography --- solar loading thermography --- lock-in thermography --- passive thermography --- thermal thickness --- thermal effusivity --- infrastructure --- NDT --- onsite X-ray bridge inspection --- 950 keV/3.95 MeV X-ray sources --- PC bridge --- unfilled grout --- quantitative evaluation of stage of unfilled grout --- step-heating thermography --- active thermography --- linear effusivity fit --- ground-penetrating radar --- signal features --- material moisture --- classification --- machine learning --- moisture measurements --- building floors --- civil engineering --- crack measurement --- image processing --- high resolution --- working distance --- crack width --- visual inspection --- structure state assessment --- ground sample distance (GSD) --- sonic resonant method --- impulse excitation technique --- resonant frequency --- steel fiber reinforced concrete --- fiber orientation --- micro-computed tomography --- ultrasound --- spectral induced polarization --- small force --- load --- instrumental signal --- two-point bending test --- strain gauge --- calibration equation --- n/a --- façade
Choose an application
Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spread an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. This Special Issue aims to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems and composites) and processes. This Special Issue will comprise, not only original research papers, but also review articles.
n/a --- microstructure --- microfluidization --- yield stress --- nonlinear diffusion equation --- particle suspensions --- colloids --- viscous gravity spreading --- nanocomposites --- BMP model --- LCB polypropylene --- diutan gum --- thixotropy --- complex fluids --- traction test --- viscoelasticity --- biopolymer --- normal stresses --- start-up shear --- OpenFOAM --- flow properties --- rheometry --- oscillatory flows --- linear viscoelasticity --- continuum model --- steady-state and transient flow --- interfacial shear rheology --- shear-banding flow --- pressure transducers --- jetting --- natural hydraulic lime --- generalized Boussinesq equation --- prototyping --- piezoelectric --- masonry --- polymer processing --- eco-friendly surfactant --- emulsion stability --- rhamsan gum --- lubricating grease --- computational rheology --- Saffman–Taylor instability --- extrusion --- volume of fluid method --- polymers --- weak gel --- cement pastes --- Carbopol --- thyme oil --- elongational flow --- rheology --- grout --- epoxy --- polystyrene --- shear thickening --- bulk rheology --- porous medium equation --- consolidation --- Dupuit-Forchheimer assumption --- yield stress fluid --- drop formation --- dilatational rheology --- droplet size distribution (DSD) --- Navier-Stokes equations --- Saffman-Taylor instability
Choose an application
The Special Issue Modeling and Simulation in Engineering, belonging to the section Engineering Mathematics of the Journal Mathematics, publishes original research papers dealing with advanced simulation and modeling techniques. The present book, “Modeling and Simulation in Engineering I, 2022”, contains 14 papers accepted after peer review by recognized specialists in the field. The papers address different topics occurring in engineering, such as ferrofluid transport in magnetic fields, non-fractal signal analysis, fractional derivatives, applications of swarm algorithms and evolutionary algorithms (genetic algorithms), inverse methods for inverse problems, numerical analysis of heat and mass transfer, numerical solutions for fractional differential equations, Kriging modelling, theory of the modelling methodology, and artificial neural networks for fault diagnosis in electric circuits. It is hoped that the papers selected for this issue will attract a significant audience in the scientific community and will further stimulate research involving modelling and simulation in mathematical physics and in engineering.
Research & information: general --- Mathematics & science --- category theory --- mathematical modelling --- abstraction --- formal approaches --- functors --- surrogate model --- Kriging --- high-dimensional problems --- principal component dimension reduction --- trochoidal milling --- variable feed --- spiral groove --- CAM --- Levy walks --- anomalous diffusion --- fractional material derivative --- combustion process --- local estimate --- Monte Carlo method --- modeling --- analog circuits --- fault diagnosis --- neural networks --- carbon nanotubes --- heat transfer --- nanofluid --- rotating --- stretching/shrinking --- adjoint --- gradient-descent --- junctions --- transport equation --- unsteady flow --- rotation --- hybrid nanofluid --- stretching sheet --- radiation --- inverse modeling --- calcium leaching --- grout curtain --- hydraulic conductivity --- optimization --- fuzzy model --- response surface methodology --- diesel engine performance --- biodiesel --- anomalous diffusion equation --- continuous time random walk --- roughness scaling extraction --- fractal dimension --- accelerated algorithm --- Weierstrass–Mandelbrot function --- milling vibration signal --- spot volatility --- change of frequency --- roughness of volatility --- hurst exponent --- Chinese A-share market --- ferrofluidslip effect --- Stefan blowing --- thermodiffusion --- n/a --- Weierstrass-Mandelbrot function
Choose an application
The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.
deformation feature --- minerals --- microstructure --- mixing --- permeability --- gas concentration --- water–rock interaction --- loose gangue backfill material --- unified pipe-network method --- fracture --- roof-cutting resistance --- crack --- similar-material --- movable fluid --- gob-side entry retaining (GER) --- rock-soil mechanics --- bed separation --- orthogonal tests --- charge separation --- water soaked height --- fluid flow in reclaimed soil --- laboratory experiment --- longwall mining --- grading broken gangue --- MIP --- elastic modulus --- effective stress --- permeability coefficient --- mixer --- naturally fracture --- SEM --- microstructure characteristics --- artificial joint rock --- fractured rock --- strata movement --- conservative solute --- particle velocity --- dry-wet cycles --- hydraulic fractures --- numerical calculation --- mechanical behaviors --- normalized conductivity-influence function --- fractured porous rock mass --- PPCZ --- segmented grouting --- non-aqueous phase liquid --- intelligent torque rheometer --- numerical analysis --- temperature --- unsaturated soil --- uniaxial compressive strength --- mine shaft --- coalbed methane (CBM) --- nonlinear flow in fractured porous media --- similar simulation --- forecasting --- tight sandstones --- oriented perforation --- hydro-mechanical coupling --- constant normal stiffness conditions --- cohesive soils --- layered progressive grouting --- chemical grouts --- grain size of sand --- Darcy’s law --- soft coal masses --- hydro-power --- cyclic heating and cooling --- cohesive element method --- cement-based paste discharge --- tectonically deformed coal --- split grouting --- fault water inrush --- filtration effects --- T-stress --- particle flow modeling --- new cementitious material --- strength --- stabilization --- fractured porous medium --- brine concentration --- initial water contained in sand --- XRD --- fracture criteria --- hydraulic conductivity --- roadway deformation --- backfill mining --- adsorption/desorption properties --- pore pressure --- roughness --- cement–silicate grout --- compressive stress --- discrete element method --- dynamic characteristics --- strain-based percolation model --- thermal-hydrological-chemical interactions --- pore distribution characteristics --- transversely isotropic rocks --- nitric acid modification --- disaster-causing mechanism --- CH4 seepage --- crack distribution characteristics --- micro-CT --- relief excavation --- Darcy flow --- hydraulic fracturing --- mixed-form formulation --- propagation --- scanning electron microscope (SEM) images --- propagation pattern --- consolidation process --- rheological deformation --- gas adsorption --- soft filling medium --- ground pressure --- orthogonal ratio test --- rock fracture --- coal seams --- high-steep slope --- interface --- orthogonal test --- stress interference --- physical and mechanical parameters --- fracture propagation --- fluid–solid coupling theory --- coupling model --- surface characteristics --- numerical manifold method --- gas --- lignite --- water inrush prevention --- coupled THM model --- hard and thick magmatic rocks --- Ordos Basin --- porosity --- damage mechanics --- seepage --- degradation mechanism --- high temperature --- visualization system --- bentonite-sand mixtures --- contamination --- conductivity-influence function --- water-rock interaction --- deterioration --- seepage pressure --- glutenite --- adhesion efficiency --- mechanical behavior transition --- bedding plane orientation --- n/a --- enhanced gas recovery --- debris-resisting barriers --- reinforcement mechanism --- on-site monitoring --- geophysical prospecting --- cyclic wetting-drying --- scoops3D --- semi-analytical solution --- enhanced permeability --- management period --- seepage control --- deformation --- Yellow River Embankment --- impeded drainage boundary --- rheological test --- circular closed reservoir --- grout penetration --- viscoelastic fluid --- coal-like material --- paste-like slurry --- floor failure depth --- supercritical CO2 --- gravel --- numerical model --- fractal --- gas-bearing coal --- shear-flow coupled test --- rheological limit strain --- CO2 flooding --- flotation --- goaf --- slope stability --- damage --- coal and gas outburst --- hydraulic fracture --- anisotropy --- high-order --- effluents --- FLAC --- limestone roof --- sandstone --- TG/DTG --- Xinjiang --- two-phase flow --- model experiment --- coal particle --- volumetric strain --- failure mode --- land reclamation --- sandstone and mudstone particles --- contiguous seams --- CO2 geological storage --- numerical simulation --- geogrid --- stress relief --- optimum proportioning --- roadside backfill body (RBB) --- pervious concrete --- mudstone --- hydraulic fracture network --- grouted sand --- fractal pore characteristics --- refraction law --- segmented rheological model --- ductile failure --- heterogeneity --- flow law --- fracture closure --- coal measures sandstone --- tight sandstone gas reservoirs --- gob behaviors --- water-dripping roadway --- creep characteristics --- internal erosion --- warning levels of fault water inrush --- hydraulic aperture --- bolt support --- discontinuous natural fracture --- microscopic morphology --- critical hydraulic gradient --- mixed mode fracture resistance --- differential settlement --- alternate strata --- finite element method --- crushing ratio --- chloride --- glauberite cavern for storing oil & --- macroscopic mechanical behaviors --- collision angle --- adsorption performance --- failure mechanism --- mechanical properties --- transmissivity --- damage evolution --- gas fracturing --- multitude parameters --- deviatoric stress --- Jiaohe --- coal --- soil properties --- acoustic emission --- pore structure --- grouting experiment --- concrete --- confining pressures --- green mining --- gas drainage --- fluid viscosity --- compression deformation --- Unsaturation --- adsorption–desorption --- seepage-creep --- constitutive model --- soil particle size --- Pseudo Steady-State (PPS) constant --- soil–structure interface --- debris flow --- fracture grouting --- initial settlement position --- regression equation --- electrical potential --- secondary fracture --- surrounding rock --- solid backfill coal mining --- time variation --- excess pore-pressures --- finite-conductivity fracture --- permeability characteristics --- rainfall-unstable soil coupling mechanism(R-USCM) --- shaft lining --- Darcy's law --- cement-silicate grout --- fluid-solid coupling theory --- adsorption-desorption --- soil-structure interface
Choose an application
The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.
deformation feature --- minerals --- microstructure --- mixing --- permeability --- gas concentration --- water–rock interaction --- loose gangue backfill material --- unified pipe-network method --- fracture --- roof-cutting resistance --- crack --- similar-material --- movable fluid --- gob-side entry retaining (GER) --- rock-soil mechanics --- bed separation --- orthogonal tests --- charge separation --- water soaked height --- fluid flow in reclaimed soil --- laboratory experiment --- longwall mining --- grading broken gangue --- MIP --- elastic modulus --- effective stress --- permeability coefficient --- mixer --- naturally fracture --- SEM --- microstructure characteristics --- artificial joint rock --- fractured rock --- strata movement --- conservative solute --- particle velocity --- dry-wet cycles --- hydraulic fractures --- numerical calculation --- mechanical behaviors --- normalized conductivity-influence function --- fractured porous rock mass --- PPCZ --- segmented grouting --- non-aqueous phase liquid --- intelligent torque rheometer --- numerical analysis --- temperature --- unsaturated soil --- uniaxial compressive strength --- mine shaft --- coalbed methane (CBM) --- nonlinear flow in fractured porous media --- similar simulation --- forecasting --- tight sandstones --- oriented perforation --- hydro-mechanical coupling --- constant normal stiffness conditions --- cohesive soils --- layered progressive grouting --- chemical grouts --- grain size of sand --- Darcy’s law --- soft coal masses --- hydro-power --- cyclic heating and cooling --- cohesive element method --- cement-based paste discharge --- tectonically deformed coal --- split grouting --- fault water inrush --- filtration effects --- T-stress --- particle flow modeling --- new cementitious material --- strength --- stabilization --- fractured porous medium --- brine concentration --- initial water contained in sand --- XRD --- fracture criteria --- hydraulic conductivity --- roadway deformation --- backfill mining --- adsorption/desorption properties --- pore pressure --- roughness --- cement–silicate grout --- compressive stress --- discrete element method --- dynamic characteristics --- strain-based percolation model --- thermal-hydrological-chemical interactions --- pore distribution characteristics --- transversely isotropic rocks --- nitric acid modification --- disaster-causing mechanism --- CH4 seepage --- crack distribution characteristics --- micro-CT --- relief excavation --- Darcy flow --- hydraulic fracturing --- mixed-form formulation --- propagation --- scanning electron microscope (SEM) images --- propagation pattern --- consolidation process --- rheological deformation --- gas adsorption --- soft filling medium --- ground pressure --- orthogonal ratio test --- rock fracture --- coal seams --- high-steep slope --- interface --- orthogonal test --- stress interference --- physical and mechanical parameters --- fracture propagation --- fluid–solid coupling theory --- coupling model --- surface characteristics --- numerical manifold method --- gas --- lignite --- water inrush prevention --- coupled THM model --- hard and thick magmatic rocks --- Ordos Basin --- porosity --- damage mechanics --- seepage --- degradation mechanism --- high temperature --- visualization system --- bentonite-sand mixtures --- contamination --- conductivity-influence function --- water-rock interaction --- deterioration --- seepage pressure --- glutenite --- adhesion efficiency --- mechanical behavior transition --- bedding plane orientation --- n/a --- enhanced gas recovery --- debris-resisting barriers --- reinforcement mechanism --- on-site monitoring --- geophysical prospecting --- cyclic wetting-drying --- scoops3D --- semi-analytical solution --- enhanced permeability --- management period --- seepage control --- deformation --- Yellow River Embankment --- impeded drainage boundary --- rheological test --- circular closed reservoir --- grout penetration --- viscoelastic fluid --- coal-like material --- paste-like slurry --- floor failure depth --- supercritical CO2 --- gravel --- numerical model --- fractal --- gas-bearing coal --- shear-flow coupled test --- rheological limit strain --- CO2 flooding --- flotation --- goaf --- slope stability --- damage --- coal and gas outburst --- hydraulic fracture --- anisotropy --- high-order --- effluents --- FLAC --- limestone roof --- sandstone --- TG/DTG --- Xinjiang --- two-phase flow --- model experiment --- coal particle --- volumetric strain --- failure mode --- land reclamation --- sandstone and mudstone particles --- contiguous seams --- CO2 geological storage --- numerical simulation --- geogrid --- stress relief --- optimum proportioning --- roadside backfill body (RBB) --- pervious concrete --- mudstone --- hydraulic fracture network --- grouted sand --- fractal pore characteristics --- refraction law --- segmented rheological model --- ductile failure --- heterogeneity --- flow law --- fracture closure --- coal measures sandstone --- tight sandstone gas reservoirs --- gob behaviors --- water-dripping roadway --- creep characteristics --- internal erosion --- warning levels of fault water inrush --- hydraulic aperture --- bolt support --- discontinuous natural fracture --- microscopic morphology --- critical hydraulic gradient --- mixed mode fracture resistance --- differential settlement --- alternate strata --- finite element method --- crushing ratio --- chloride --- glauberite cavern for storing oil & --- macroscopic mechanical behaviors --- collision angle --- adsorption performance --- failure mechanism --- mechanical properties --- transmissivity --- damage evolution --- gas fracturing --- multitude parameters --- deviatoric stress --- Jiaohe --- coal --- soil properties --- acoustic emission --- pore structure --- grouting experiment --- concrete --- confining pressures --- green mining --- gas drainage --- fluid viscosity --- compression deformation --- Unsaturation --- adsorption–desorption --- seepage-creep --- constitutive model --- soil particle size --- Pseudo Steady-State (PPS) constant --- soil–structure interface --- debris flow --- fracture grouting --- initial settlement position --- regression equation --- electrical potential --- secondary fracture --- surrounding rock --- solid backfill coal mining --- time variation --- excess pore-pressures --- finite-conductivity fracture --- permeability characteristics --- rainfall-unstable soil coupling mechanism(R-USCM) --- shaft lining --- Darcy's law --- cement-silicate grout --- fluid-solid coupling theory --- adsorption-desorption --- soil-structure interface
Choose an application
This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained.
Technology. --- rock bolt --- grouting quality --- dynamic response --- natural frequency --- finite element method --- monitoring --- historical masonry wall --- hygrothermal processes --- internal insulation --- testing of building materials --- test uncertainty --- validation of test methods --- sustainable test methods --- recycling --- foamed asphalt mixtures with cement (FAC) --- base layer --- reclaimed asphalt pavement (RAP) --- fatigue durability --- GFRP --- FRP reinforcement --- shear --- capacity --- reinforced concrete beams --- column --- stiffness --- FRCM --- PBO mesh --- PBO–FRCM --- carpentry joints --- scarf and splice joints --- stop-splayed scarf joints (‘bolt of lightning’) --- static behaviour --- experimental research --- concrete --- non-destructive testing --- ultrasounds --- ultrasonic tomography --- acoustic methods --- defects --- diagnostic --- detection --- convolutional neural networks --- transfer learning --- monitoring FBG --- power transmission tower --- civil engineering --- X-ray microtomography --- microstructure characteristics --- infiltration damage --- high-strength concrete --- steel fibres --- flexural tensile strength --- fracture energy --- numerical analysis --- concrete floors --- compressive strength --- strength distribution --- industrial floors --- ultrasound tests --- ventilated facades --- large-scale facade model --- fire safety --- fiber cement board --- large-slab ceramic tile --- plasterboards --- moisture content --- hydration processes --- mechanical properties --- ultrasound measurements --- ESD resin --- expansion joint --- quasi-plastic material --- energy absorption --- asphalt mix --- compaction index --- volumetric parameters --- stiffness modulus --- moisture resistance --- roughness --- texture --- close-range photogrammetry --- bond strength --- random field generation --- semivariograms --- hybrid truss bridge --- steel–concrete connection joint --- mechanical behavior --- failure mode --- strain --- static test --- static elastic modulus --- dynamic elastic modulus --- machine learning --- P-wave --- S-wave --- resonance frequency test --- nondestructive method --- Al–Ti laminate --- fracture --- acoustic emission diagnostic --- pattern recognition --- clustering AE signal --- storage systems --- tab connector --- flexural test --- capable design moment --- restrained ring test --- autogenous shrinkage cracking --- concrete cracking test --- concrete shrinkage cracking test --- restrined ring calibration --- cement–fiber boards --- acoustic emission method --- k-means algorithm --- wavelet analysis --- fiber composites --- ground penetrating radar (GPR) --- HMA dielectric constant --- road pavement thickness estimation --- early age concrete --- damage processes detection before loading --- strength of structures --- aggregate --- classification --- wire mesh --- roundness --- tilting angle --- opening size --- concrete centrifugation --- morphology --- image processing --- porosity --- cement --- waste paper sludge ash (WPSA) --- controlled low-strength material (CLSM) --- unconfined compressive strength --- bearing capacity --- backfill material --- P-wave velocity --- amplitude attenuation --- resistivity --- CT scan --- sandstone --- damage variable --- nuclear magnetic resonance --- spin-lattice relaxometry --- proton --- hydration kinetics --- superplasticizer --- ready-mixed concrete --- construction material --- quality assessment --- conformity criteria --- statistical-fuzzy method --- FRTP --- rivet --- connection --- polyethylene pipe --- mechanical properties of polyethylene --- resistance strain --- computer simulation --- residual shear stress --- particle crushing --- ring shear test --- particle flow code (PFC2D) --- frictional work --- fibre-reinforced concrete --- recycled steel fibres --- micro-computed tomography --- scanning electron microscopy --- tensile strength --- reinforced concrete --- diagnostic testing --- corrosion --- carbonation --- galvanostatic pulse method --- phase composition analysis --- X-ray analysis --- thermal analysis --- quasi-brittle cement composites --- low-module polypropylene fibres --- elastic range --- digital image correlation --- Arcan shear test --- wood --- orthotropic shear modulus --- elastic-plastic material --- shear wave velocity --- sand --- bender elements test --- grain-size characteristics --- complex modulus --- shrinkage analysis --- reclaimed asphalt --- mineral–cement emulsion mixtures --- cement dusty by-products (UCPPs) --- degradation of glass panels --- effective area ratio --- relative mass loss --- visible light transmittance --- windblown sand --- wood-plastic composites --- methods of testing resistance to fungi --- methods of assessment --- ground-penetrating radar (GPR) --- non-destructive techniques (NDT) --- corrosion of reinforcement --- slip resistance --- granite floor --- slip resistance value --- ramp test --- acceptance angle --- sliding friction coefficient --- comparability of test methods --- wall temperature --- fibre bragg grating sensors --- freeze-thaw cycles --- signal analysis --- short-time Fourier transform --- fast Fourier transform --- brine --- sodium chloride --- X-ray --- partition walls --- brick walls --- bending strength --- cracking --- post-tension --- cable --- girder --- destructive test --- non-destructive test --- structural health monitoring --- safety --- monitoring fibre Bragg grating --- mining areas --- strain/stress distribution --- geopolymer concrete --- fly-ash --- bottom-ash --- neural network --- sustainability --- industrial waste management --- flexural strength --- cladding --- AE acoustic emission --- micro-events --- sound spectrum --- traditional and quasi-brittle cement composites --- residual-state creep --- saturation front --- landslides --- erosional stability --- laboratory testing --- grout mixtures --- groundwater --- test apparatus --- testing --- building materials --- elements
Listing 1 - 10 of 11 | << page >> |
Sort by
|