Listing 1 - 2 of 2 |
Sort by
|
Choose an application
These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The “standard” formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the other, are the standard tools used in most applications of quantum theory in physics and chemistry. Yet, other mathematical representations of quantum mechanics sometimes allow better comprehension and justification of quantum theory. This text focuses on two of such representations: the algebraic formulation of quantum mechanics and the “quantum logic” approach. Last but not least, some emphasis will also be put on understanding the relation between quantum physics and special relativity through their common roots - causality, locality and reversibility, as well as on the relation between quantum theory, information theory, correlations and measurements, and quantum gravity. Quantum mechanics is probably the most successful physical theory ever proposed and despite huge experimental and technical progresses in over almost a century, it has never been seriously challenged by experiments. In addition, quantum information science ha s become an important and very active field in recent decades, further enriching the many facets of quantum physics. Yet, there is a strong revival of the discussions about the principles of quantum mechanics and its seemingly paradoxical aspects: sometimes the theory is portrayed as the unchallenged and dominant paradigm of modern physical sciences and technologies while sometimes it is considered a still mysterious and poorly understood theory, waiting for a revolution. This volume, addressing graduate students and seasoned researchers alike, aims to contribute to the reconciliation of these two facets of quantum mechanics.
Physics. --- Quantum Physics. --- Quantum Information Technology, Spintronics. --- Mathematical Physics. --- Mathematical Methods in Physics. --- History and Philosophical Foundations of Physics. --- Quantum theory. --- Mathematical physics. --- Physique --- Théorie quantique --- Physique mathématique --- Physics --- Physical Sciences & Mathematics --- Atomic Physics --- Quantum physics. --- Quantum computers. --- Spintronics. --- Physical mathematics --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Mechanics --- Thermodynamics --- Mathematics --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Fluxtronics --- Magnetoelectronics --- Spin electronics --- Spinelectronics --- Microelectronics --- Nanotechnology --- Computers
Choose an application
Les idées du groupe de renormalisation développées pour la physique statistique dans les années 1970, en grande partie par Kenneth Wilson (prix Nobel 1982), ont entièrement renouvelé ce que l’on appelait la théorie relativiste des champs quantiques, née dans les années 1930 et développée sous la forme de l’électrodynamique quantique dans les années 1950.Un résultat de ce renouvellement est la théorie statistique des champs, une boîte à outils de tout physicien théoricien, de la physique des hautes énergies à la physique statistique.Ce livre, qui repose sur un enseignement de plusieurs années, notamment dans le parcours « Physique théorique » du Master 2 «Concepts fondamentaux de la physique », à l’École normale supérieure, est une introduction pédagogique à cet ensemble incontournable de notions. Il est destiné aux étudiants et aux chercheurs.La théorie statistique des champs repose sur l’analogie entre les fluctuations quantiques d’un système quantique et les fluctuations thermiques d’un système classique relié. Le premier tome était consacré à l’aspect « quantique » de la théorie des champs.Ce deuxième tome est consacré au point de vue et aux applications « physique statistique » de la théorie quantique des champs. Après une introduction aux phénomènes critiques, le groupe de renormalisation de Wilson dans l’espace réel est présenté en détail, et ses relations avec le groupe de renormalisation perturbatif sont discutées de façon approfondie. Les applications du groupe de renormalisation au calcul des exposants critiques sont présentées pour un certain nombre de cas. Le livre aborde les modèles de spins et les modèles sigma non linéaires, le rôle des excitations topologiques(vortex), le modèle XY et la transition de Kosterlitz-Thouless. Il introduit également les modèles simples de polymères, les chaînes de spins quantiques, les phénomènes de mouillage, les membranes flexibles. Un chapitre introduit aux effets de taille finie dans les systèmes critiques. Enfin un dernier chapitre constitue une introduction à l’invariance d’échelle et à l’invariance conforme, en particulier en deux dimensions.
Listing 1 - 2 of 2 |
Sort by
|