Listing 1 - 10 of 101 | << page >> |
Sort by
|
Choose an application
"In this collection, the authors begin by introducing a methodology for examining continuous-time Ornstein-Uhlenbech family processes defined by stochastic differential equations (SDEs). Additionally, a study is presented introducing the mathematics of mixed effect parameters in univariate and bivariate SDEs and describing how such a model can be used to aid our understanding of growth processes using real world datasets. Results and experience from applying the concepts and techniques in an extensive individual tree and stand growth modeling program in Lithuania are described as examples. Next, the authors present a review paper on J-calculus, as well as a contributed paper which displays some new results on the topic and deepens some special properties in relation with non-differentiability of functions. Following this, this book develops the general framework to be used in our papers [2, 9, 8]. The starting point for the discussion will be the standard risk-sensitive structures, and how constructions of this kind can be given a rigorous treatment. The risk-sensitive optimal control is also investigated by using the extending part of this of problem of backward stochastic equation. In the closing article, the authors note that the square of an O-U process is the Cox-Ingersoll-Ross process used as a model for volatility in finance. The filtered form of the original hazard rate based on this new observation is also studied. If the difference between the original hazard rate and the filtered one is not significant, then the person is not affected by the new frailty"--
Choose an application
This advanced undergraduate and graduate text has now been revised and updated to cover the basic principles and applications of various types of stochastic systems, with much on theory and applications not previously available in book form. The text is also useful as a reference source for pure and applied mathematicians, statisticians and probabilists, engineers in control and communications, and information scientists, physicists and economists.Has been revised and updated to cover the basic principles and applications of various types of stochastic systemsUseful as
Choose an application
The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations.
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
Stochastic partial differential equations can be used in many areas of science to model complex systems that evolve over time. Their analysis is currently an area of much research interest. This book consists of papers given at the ICMS Edinburgh meeting held in 1994 on this topic, and it brings together some of the world's best known authorities on stochastic partial differential equations. Subjects covered include the stochastic Navier-Stokes equation, critical branching systems, population models, statistical dynamics, and ergodic properties of Markov semigroups. For all workers on stochastic partial differential equations this book will have much to offer.
Stochastic partial differential equations --- Differential equations, Partial --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces
Choose an application
Rigorous error estimates for amplitude equations are well known for deterministic PDEs, and there is a large body of literature over the past two decades. However, there seems to be a lack of literature for stochastic equations, although the theory is being successfully used in the applied community, such as for convective instabilities, without reliable error estimates at hand. This book is the first step in closing this gap. The author provides details about the reduction of dynamics to more simpler equations via amplitude or modulation equations, which relies on the natural separation of ti
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
The study of measure-valued processes in random environments has seen some intensive research activities in recent years whereby interesting nonlinear stochastic partial differential equations (SPDEs) were derived. Due to the nonlinearity and the non-Lipschitz continuity of their coefficients, new techniques and concepts have recently been developed for the study of such SPDEs. These include the conditional Laplace transform technique, the conditional mild solution, and the bridge between SPDEs and some kind of backward stochastic differential equations. This volume provides an introduction to
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Differential equations, Nonlinear.
Choose an application
This book provides the mathematical definition of white noise and gives its significance. White noise is in fact a typical class of idealized elemental (infinitesimal) random variables. Thus, we are naturally led to have functionals of such elemental random variables that is white noise. This book analyzes those functionals of white noise, particularly the generalized ones called Hida distributions, and highlights some interesting future directions. The main part of the book involves infinite dimensional differential and integral calculus based on the variable which is white noise. The present
White noise theory. --- Stochastic analysis. --- Stochastic differential equations.
Choose an application
Stochastic systems
Choose an application
Choose an application
Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The b
Differential equations. --- Mathematics. --- Stochastic partial differential equations. --- Stochastic partial differential equations --- Mathematics --- Physical Sciences & Mathematics --- Mathematical Statistics --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Listing 1 - 10 of 101 | << page >> |
Sort by
|