Listing 1 - 4 of 4 |
Sort by
|
Choose an application
La 4e de couv. indique : "Comprendre l'évolution climatique de la Terre et des autres planètes est un enjeu majeur. Le Terre est la seule planète du Système solaire dont les conditions tempérées autorisent aujourd'hui la présence d'eau liquide à sa surface, eau qui paraît nécessaire à une vie évoluée. Ses soeurs Vénus et Mars sont extrêmement différentes. pourquoi ces trois planètes, nées dans des conditions assez comparables, ont-elles évolué vers les conditions que nous observons aujourd'hui ? Mettre en évidence les facteurs, physiques ou chimiques qui sont à l'origine de ces évolutions si divergentes est une première étape à franchir pour mieux comprendre comment la vie a pu apparaître sur la Terre et s'y développer. Cette interrogation prend une nouvelle dimension avec la découverte de milliers de planètes extrasolaires, les exoplanètes, dont certaines pourraient ressembler à la Terre. Peuvent-elles abriter la vie ? Avec leur découverte, la question "Sommes-nous seuls dans l'Univers ?", vieille comme l'humanité, ne se cantonne plus à notre Système solaire, mais voit le champ des possibilités s'ouvrir à l'infini. nous avons aujourd'hui les moyens d'aborder le problème sous un angle scientifique et pas seulement philosophique, comme c'était le cas dans le passé. Dans cette perspective, il est plus que jamais nécessaire de comprendre l'évolution des planètes et de mieux cerner les facteurs qui permettent l'émergence et le développement de la vie : c'est un des buts de ce livre. L'engouement du public pour le sujet se traduit parfois par des annonces sensationnelles et prématurées. Le livre rappelle qu'il reste un long chemin à parcourir avant que l'on parvienne à détecter la vie sur une exoplanète ; en conclusion, il trace aussi les pistes d'une future exploration des exoplanètes habitables."
Life on other planets. --- Extrasolar planets. --- Inner planets. --- Life --- Vie extraterrestre. --- Exoplanètes. --- Planètes telluriques. --- Origine de la vie. --- Origin. --- Exobiology. --- Exoplanètes. --- Planètes telluriques.
Choose an application
Seventy years ago, Erwin Schrödinger posed a simple, yet profound, question: 'What is life?'. How could the very existence of such extraordinary chemical systems be understood? This problem has puzzled biologists and physical scientists both before, and ever since.Living things are hugely complex and have unique properties, such as self-maintenance and apparently purposeful behaviour which we do not see in inert matter. So how does chemistry give rise to biology? Did life begin with replicating molecules, and, if so, what could have led the first replicating molecules up such a path? Now, deve
Life (Biology) --- Biology. --- Life sciences --- Biomass --- Natural history --- Biology --- Vie (biologie) --- Biologie --- Origine de la vie. --- Chimie --- Force vitale. --- Life --- Chemistry --- Vital force. --- Philosophie. --- Philosophy. --- Origin.
Choose an application
Earth is, to our knowledge, the only life-bearing body in the Solar System. This extraordinary characteristic dates back almost 4 billion years. How to explain that Earth is teeming with organisms and that this has lasted for so long ? What makes Earth different from its sister planets Mars and Venus ? The habitability of a planet is its capacity to allow the emergence of organisms. What astronomical and geological conditions concurred to make Earth habitable 4 billion years ago, and how has it remained habitable since? What have been the respective roles of non-biological and biological characteristics in maintaining the habitability of Earth ? This unique book answers the above questions by considering the roles of organisms and ecosystems in the Earth System, which is made of the non-living and living components of the planet. Organisms have progressively occupied all the habitats of the planet, diversifying into countless life forms and developing enormous biomasses over the past 3.6 billion years. In this way, organisms and ecosystems "took over" the Earth System, and thus became major agents in its regulation and global evolution. There was co-evolution of the different components of the Earth System, leading to a number of feedback mechanisms that regulated long-term Earth conditions.For millennia, and especially since the Industrial Revolution nearly 300 years ago, humans have gradually transformed the Earth System. Technological developments combined with the large increase in human population have led, in recent decades, to major changes in the Earth's climate, soils, biodiversity and quality of air and water. After some successes in the 20th century at preventing internationally environmental disasters, human societies are now facing major challenges arising from climate change. Some of these challenges are short-term and others concern the thousand-year evolution of the Earth's climate. Humans should become the stewards of Earth.
Environmental law --- Hydrosphere --- Meteorology. Climatology --- Geology. Earth sciences --- General ecology and biosociology --- Water supply. Water treatment. Water pollution --- Physical geography --- hydrologie --- water --- klimatologie --- milieurecht --- geologie --- fysische geografie --- aarde (astronomie) --- ecosystemen --- Earth sciences --- Sciences de la Terre. --- Life --- Origine de la vie. --- Origin. --- Earth sciences.
Choose an application
The field of Artificial life (ALife) is now firmly established in the scientific world, but it has yet to achieve one of its original goals: an understanding of the emergence of life on Earth. The new field of artificial chemistries draws from chemistry, biology, computer science, mathematics, and other disciplines to work toward that goal. For if, as it has been argued, life emerged from pirmitive, prebiotic forms of self-organizations, then studying models of chemical reaction systems could bring ALife closer to understanding the origins of life. In artificial chemistries (ACs), the emphasis is on creating new interactions rather than new materials. The results can be found in both the virtual world, in certain multiagent systems, and in the physical world, in new (artificial) reaction systems. This book offers an introduction to the fundamental concepts of ACs, covering both theory and practical applications. After a general overview of the field and its methodology, the book reviews important aspects of biology, including basic mechanisms of evolution; discusses examples of ACs drawn from the literature; considers fundamental questions of how surveys a range of applications, which include computing, systems modeling in biology, and synthetic life. An appendix provides a Python toolkit for implementing ACs. -- from back cover.
Biochemistry. --- Molecular evolution. --- Chemistry, Physical and theoretical. --- Evolution (Biology) --- Life --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Biology --- Chemistry --- Medical sciences --- Abiogenesis --- Biogenesis --- Germ theory --- Heterogenesis --- Life, Origin of --- Life (Biology) --- Origin of life --- Plasmogeny --- Plasmogony --- Exobiology --- Spontaneous generation --- Animal evolution --- Animals --- Biological evolution --- Darwinism --- Evolutionary biology --- Evolutionary science --- Origin of species --- Evolution --- Biological fitness --- Homoplasy --- Natural selection --- Phylogeny --- Chemistry, Theoretical --- Physical chemistry --- Theoretical chemistry --- Biochemical evolution --- Chemical evolution --- Molecular biology --- Origin. --- Composition --- Origin --- COMPUTER SCIENCE/Artificial Intelligence --- BIOMEDICAL SCIENCES/General --- Biochimie. --- Évolution moléculaire. --- Chimie physique et théorique. --- Évolution (biologie) --- Origine de la vie.
Listing 1 - 4 of 4 |
Sort by
|