Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Germanium (Ge) chalcogenides are characterized by unique properties that make these materials interesting for a very wide range of applications from phase change memories to ovonic threshold switches and from photonics to thermoelectric and photovoltaic devices. In many cases, their physical properties can be finely tuned by doping or by changing the amount of Ge, which may therefore play a key role in determining the applications, performance, and even the reliability of these devices. In this book, we include 11 articles, mainly focusing on applications of Ge chalcogenides for non-volatile memories. Most of the papers have been produced with funding received from the European Union’s Horizon 2020 Research and Innovation program under grant agreement n. 824957. In the Special Issue “BeforeHand: Boosting Performance of Phase Change Devices by Hetero- and Nanostructure Material Design”, two contributions are related to the prototypical Ge2Sb2Te5 compound, which is the most studied composition, already integrated in many devices such as optical and electronic memories. Five articles focus on Ge-rich GeSbTe alloys, exploring the electrical and the structural properties, as well as the decomposition paths. Other contributions are focused on the effect of the interfaces and on nanowires.
Technology: general issues --- Chemical engineering --- PCM --- Ge2Sb2Te5 --- sputtering --- flexible substrates --- crystallization --- electrical properties --- phase change materials --- nitrogen --- strain --- kinetics --- amorphous phase --- germanium telluride --- indium alloying --- optical contrast --- Ge-rich alloys --- crystallization temperature --- segregation --- Ge-rich GST alloys --- Raman --- electronic properties --- Ge-rich GST --- pulsed laser deposition --- phase separation --- GGST --- EDX elemental chemical mapping --- embedded memory --- density functional theory --- MOCVD --- VLS --- phase-change memory --- nanowires --- core-shell --- Ge–Sb–Te --- Ge–Sb–Te/Sb2Te3 --- embedded electronic memories --- Density Functional Theory --- high-throughput calculations ---
Choose an application
Silica and silicon-based nanostructures are now well-understood materials for which the technologies are mature. The most obvious applications, such as electronic devices, have been widely explored over the last two decades. The aim of this Special Issue is to bring together the state of the art in the field and to enable the emergence of new ideas and concepts for silicon and silica-based nanostructures.
maize --- NPK --- SiO2-NPs --- productivity --- fertilizer --- mineral --- weevils --- LC50 --- toxicity --- mesoporous silica --- nanomaterials --- desulfurization --- fuel --- JP-8 --- black silicon --- light absorption enhanced --- micro-nano manufacturing --- nanometer surface --- nano-silica --- tricalcium aluminate --- pozzolanic reaction --- C-A-S-H gel --- silicon nanoparticles --- silicon nanowires --- synthesis --- high energy density --- lithium-ion batteries --- high-capacity anode --- VLS --- laser pyrolysis --- size effect --- shape effect --- biomass rice husk --- silicon --- nanocrystals --- luminescence --- high porosity --- pH sensor --- temperature sensor --- dual sensor --- metal-assisted chemical etching --- Si nanostructures --- high aspect ratio --- zone plate --- silicon nanowire --- nanowire array --- silicon anode --- n-type silicon anode --- Li-ion battery --- nanowires --- nanonets --- transistor --- integration process --- n/a --- Research. --- Physics.
Listing 1 - 2 of 2 |
Sort by
|