Listing 1 - 10 of 114 | << page >> |
Sort by
|
Choose an application
Chromatografische technieken en analyses worden in ieder modern laboratorium dagelijks op ruime schaal toegepast. Tegenwoordig worden hiervoor vaak geautomatiseerde instrumenten gebruikt. Kennis van de theoretische achtergronden en inzicht in de technieken blijft echter noodzakelijk voor een goede methode-ontwikkeling en voor efficiënt gebruik van de apparatuur. Dit beknopte leerboek verschaft deze achtergrondkennis. Door een goede selectie uit de inhoud van dit boek kan zowel de doorsnee analyticus/chromatografie-gebruiker als de toekomstige chromatografie-specialist de voor zijn niveau van werk noodzakelijke basiskennis verwerven. Het boek bestaat uit drie delen. Na een inleidend hoofdstuk wordt in het eerste gedeelte aandacht geschonken aan de fysische en fysisch-chemische achtergronden van het chromatografische scheidingsproces; verschijnselen zoals stroming, stoftransport en verdelingsevenwichten komen hier aan de orde. Het tweede gedeelte van het boek is gewijd aan de praktijk van de gaschromatografie en het derde deel handelt over de praktijk van de vloeistofchromatografie. In deze 3e druk zijn enkele nieuwe ontwikkelingen in de vloeistofchromatografie toegevoegd, zoals HILIC, LC-MS en UPLC.
Choose an application
Dit boek is bedoeld voor alle niveaus laboratoriummedewerkers, in opleiding voor of werkzaam op een klinisch chemisch en hematologisch laboratorium. Het boek bevat naast basiskennis ook verdiepingsstof, aangegeven in aparte, blauwe kaders. Deze verdiepingsmaterie is met name geschreven voor het HBO-onderwijs. Op basis van nieuwe ontwikkelingen binnen het vak zijn er in deze derde druk extra paragrafen toegevoegd aan de hoofdstukken 9, 15 en 18. De hoofdstukken zijn op elkaar afgestemd, maar je kunt ze ook afzonderlijk lezen.
Hematologie --- Klinische chemie --- Electrochemistry --- Clinical chemistry --- Pathological haematology --- Fe (ijzer) --- tumoren --- klinische chemie --- laboratoriumdiagnostiek --- biochemie --- Ca (calcium) --- hematologie --- LC (liquid chromatography) --- elektrochemie --- AAS (atomaire absorptie spectrometrie) --- enzymen
Choose an application
Deze derde druk van Klinische chemie en hematologie is ten opzichte van de tweede druk op enkele vlakken herzien.Op basis van nieuwe ontwikkelingen binnen het vak zijn er extra paragrafen toegevoegd aan de hoofdstukken 4, 9, 12 en 16. Hoofdstuk 1, 2 en 15 zijn inhoudelijk hier en daar aangepast. De overige hoofstukken hebben nauwelijks of slechts enkele kleine aanpassingen ondergaan.De oorspronkelijke opzet van de hoofdstukken is niet fundamenteel gewijzigd. De hoofdstukken zijn op elkaar afgestemd, maar kunnen ook afzonderlijk worden gelezen. Het boek bevat naast basiskennis tevens verdiepingsstof, aangegeven in aparte, blauwe kaders. Deze verdiepingsmaterie is vooral geschreven voor het hbo-onderwijs.Naast gebruik in het onderwijs, is het boek een uitstekend naslagwerk voor analisten, werkzaam in de gezondheidszorg.
Klinische chemie --- Hematologie --- Electrochemistry --- Clinical chemistry --- Pathological haematology --- Fe (ijzer) --- tumoren --- klinische chemie --- laboratoriumdiagnostiek --- biochemie --- Ca (calcium) --- hematologie --- LC (liquid chromatography) --- elektrochemie --- AAS (atomaire absorptie spectrometrie) --- enzymen
Choose an application
Decades of research have identified a role for dopamine neurotransmission in prefrontal cortical function and flexible cognition. Abnormal dopamine neurotransmission underlies many cases of cognitive dysfunction. New techniques using optogenetics have allowed for ever more precise functional segregation of areas within the prefrontal cortex, which underlie separate cognitive functions. Learning theory predictions have provided a very useful framework for interpreting the neural activity of dopamine neurons, yet even dopamine neurons present a range of responses, from salience to prediction error signaling. The functions of areas like the Lateral Habenula have been recently described, and its role, presumed to be substantial, is largely unknown. Many other neural systems interact with the dopamine system, like cortical GABAergic interneurons, making it critical to understand those systems and their interactions with dopamine in order to fully appreciate dopamine's role in flexible behavior. Advances in human clinical research, like exome sequencing, are driving experimental hypotheses which will lead to fruitful new research directions, but how do (or should?) these clinical findings inform basic research? Following new information from these techniques, we may begin to develop a fresh understanding of human disease states which will inform novel treatment possibilities. However, we need an operational framework with which to interpret these new findings. Therefore, the purpose of this Research Topic is to integrate what we know of dopamine, the prefrontal cortex and flexible behavior into a clear framework, which will illuminate clear, testable directions for future research.
behavioral flexibility --- Dopamine --- medial prefrontal cortex (mPFC) --- Attentional set-shifting --- basal forebrain --- anterior cingulate cortex (ACC) --- endocannabinoid system --- lateral habenula (LHb) --- Locus coeruleus (LC) --- motivational salience
Choose an application
This Book of Toxins comprises 11 original contributions and one review. New findings regarding presence of mycotoxins in aromatic and medicinal plants, mango and orange juice, juices, pulps, jams, and beer, from Morocco, Pakistan, and Portugal are reported. In these studies, innovative techniques to study their presence has been developed, including liquid chromatography coupled with time-of-flight mass spectrometry to analyse mycotoxins and conjugated mycotoxins. Novel strategies to detect mycotoxin presence and comparisons the characteristics of a rapid quantitative analysis of different mycotoxins (deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, and zearalenone) are also presented using acetyl- and butyrylcholinesterases and photobacterial strains of luminescent cells. Additionally, toxicological effects of zearalenone metabolites and beauvericin on SH-SY5Y neuronal cells are presented. One important point in the control of mycotoxins is related to decontaminated strategies, and in this sense the efficacy of potentially probiotic fruit-derived Lactobacillus isolates in removing aflatoxin M1 (AFM1) is presented. Other mycotoxin decontaminated techniques included in this book are electron beam irradiation (EBI) and degradation of zearalenone and ochratoxin A using ozone. Finally, a review that summarizes the newly discovered macrocyclic trichothecenes and their bioactivities over the last decade is included.The evaluation of the presence of mycotoxins in different matrices is achieved through different analytical tools (including quantitative or qualitative determinations). Studies of mycotoxin isolation, using chromatographyc equipment coupled to spectrometry detectors (QTrap-MS/MS, MS/MS tandem, QTOF-MS/MS), are the most useful tools to control their presence. All these studies represent key steps in the establishment of the limits of detection, limits of quantification, points of identification, accuracy, reproducibility, and repeatability of different procedures. The maximum permitted or recommended levels for mycotoxins in different matrices are within a wide range (including the levels tolerated by infants and animals). In addition, decontaminated strategies, as well as control and evaluation of exposure, are demanded by authorities and food safety systems.
patulin --- mango --- orange --- fruit-derived products --- food safety --- regulatory limits --- chitosan --- mycotoxins --- detoxification --- LC-MS/MS --- optimization --- Destruxins --- Bombyx mori --- BmArgRS --- BmLamin-C --- RNA helicase --- binding protein --- ozone --- electron beam irradiation --- degradation --- zearalenone --- ochratoxin A --- SH-SY5Y cells --- zearalenone derivates --- beauvericin --- MTT --- qTOF–MS/MS --- beer --- immunoaffinity clean-up --- LC-FD --- human risk assessment --- Enniatin B1 --- biomonitoring --- in vivo --- metabolomics --- high resolution mass spectrometry (HRMS) --- macrocyclic trichothecenes --- bioactivities --- putative biosynthetic pathway --- macrocycle formation --- entomopathogens --- mycoinsecticides --- secondary metabolites --- insect pathogenesis --- acetamiprid accumulation --- aflatoxin M1 --- Lactobacillus --- probiotics --- binding --- bioluminescent bacteria --- immobilized cells --- cholinesterase-based analysis --- analytical characteristics --- enzymatic detoxification --- co-occurrence --- Q-TOF-LC/MS --- exposure --- Morocco --- n/a --- qTOF-MS/MS
Choose an application
Farmacie --- pharmacy --- pharmacology --- infrared spectroscopy --- Farmacologie --- spectrometrie --- IR spectroscopie --- Analysis of pharmaceuticals --- geneesmiddelen --- farmacologie --- Nuclear physics --- farmacie --- Pharmacology. Therapy --- chromatografie --- AAS (atomaire absorptie spectrometrie) --- DLC (dunnelaagchromatografie) --- titrimetrie --- electrophoresis --- LC (liquid chromatography) --- HPLC (high power liquid chromatography)
Choose an application
In recent years, there has been rapid growth in the availability of innovative, non-combustible products, including oral tobacco-derived nicotine (OTDN) products, heated tobacco products (HTPs), and electronic cigarettes (also referred to as e-vapor products; EVPs). Industry, academic, and government researchers are developing and validating analytical methods to extract, separate, identify, and quantitate a variety of analytes from these innovative tobacco products using a wide range of analytical techniques. These analytes include constituents such as nicotine, degradants and impurities, flavors, non-tobacco ingredients, HPHCs, and other currently unknown constituents. In this Special Issue, we received nine contributions that covered the latest analytical methods that have been developed and applied for the chemical characterization or exposure assessment to tobacco product constituents of innovative non-combustible products. This Special Issue is representative of the importance of analytical sciences research in characterizing innovative non-combustible products for guiding product design, determining relative product performance, ensuring consistency during the manufacturing process, informing toxicological risk assessment, and enabling regulatory reporting. The current advances in the development and applications of the analytical methods reported in this Special Issue can be used to inform the harm reduction potential of innovative non-combustible products for adult smokers.
on!® nicotine pouches --- nicotine --- dissolution --- release profile --- validation --- product assessment --- smokeless tobacco product --- nicotine degradants --- nicotine-related impurities --- alkaloids --- nicotine degradation products --- nicotine pouches --- reduced-risk products --- constituents --- method development --- method validation --- JUUL --- aerosol --- non-targeted analysis --- chemical characterization --- ENDS --- e-cigarette --- GC–MS --- LC–HRMS --- e-liquid --- 2,4-DNPH derivatization --- formaldehyde --- “hidden formaldehyde” --- formaldehyde-containing hemiacetal/acetal adducts --- HPHC --- GC-MS --- 3-hydroxybenzo[a]pyrene --- LC–MS/MS --- urine --- human biomonitoring --- derivatization --- potentially reduced-risk products --- propylene glycol --- electronic cigarette --- biomarker of exposure --- compliance marker --- oral tobacco derived nicotine (OTDN) pouches --- snus --- nicotine release --- nicotine dissolution --- nicotine extraction --- equivalence --- modern oral nicotine products --- HPHCs --- product characterizations --- n/a --- LC-HRMS --- "hidden formaldehyde" --- LC-MS/MS
Choose an application
Food, by nature, is a biological substrate and is therefore capable of supporting the growth of microbials that are potential producers of toxic compounds. Among them mycotoxins, marine biotoxins, plant toxins, cyanogenic glycosides, and toxins occurring in poisonous mushrooms pose not only a risk to both human and animal health but also impact food security and nutrition by reducing people’s access to healthy food. This book collects some of the recent key improvements of analytical methodologies for the detection of natural toxins and their metabolites in food, and highlights the challenges yet to be resolved. Special emphasis is given to emerging or less-investigated toxins, to provide the scientific community with new tools and/or data supporting a better understanding of related food safety issues.
citreoviridin --- antibody --- immunoassay --- rice --- amatoxins --- amanitins --- monoclonal antibodies --- ELISA --- death cap mushrooms --- LC-MS --- pyrrolizidine alkaloid --- honey --- Parsonsia straminea --- lycopsamine --- indicine --- Heliotropium amplexicaule --- two dimensional layered nanomaterials --- electrochemical biosensors --- microbial toxin detection --- antibodies --- aptamers --- lateral flow immunoassay --- point-of-care --- mushroom poisoning --- oleandrin --- LC-MS/MS --- plant toxins --- validation --- herbs --- urine --- Aflatoxin M1 --- milk --- strip test immunoassay --- method validation --- CBA-N2a --- standardization --- matrix effects --- absorbance data --- ciguatoxins --- brevetoxins --- saxitoxins --- biological sample --- seafood safety --- n/a
Choose an application
Phenolic compounds are an extremely diverse class of ubiquitous secondary metabolites produced by a variety of organisms playing different biological roles. They have numerous types of demonstrated bioactivities, including antioxidant, antimicrobial, anti-inflammatory, antitumoral, immunomodulator, neuroprotective, cardioprotective, and antidiabetic activities. Marine organisms produce a vast collection of unique phenolic structures, some of them not found in terrestrial habitats. Progress in different aspects is rapidly advancing, and this Special Issue will provide updated information and recent studies on marine phenolics. Specially, this issue is focused on their chemical characterization, elucidation of their structures, evaluation of their biological properties and mechanisms of action, efficient extraction and purification technologies, development of value-added applications, as well as formulation of novel products.
ultrasound assisted extraction --- conventional extraction --- polyphenols --- phlorotannin --- macroalgae --- antioxidant capacity --- seaweeds --- antioxidant potential --- LC-ESI-QTOF-MS/MS --- HPLC-PDA --- seaweed polyphenols --- hypoglycemic effect --- starch digestion --- enzyme inhibition --- cochayuyo --- seaweed polyphenolics --- polyphenolics extractions --- phlorotannins --- bromophenols --- flavonoids --- phenolic terpenoids --- polyphenolics bioactivities --- marine phenolics --- emerging technologies --- extraction --- Ascophyllum --- seaweed --- health benefits --- isomers --- LC-MSn --- diversity --- phenolics --- simple phenolics --- seawater --- algae --- seagrass --- biological activity --- brown seaweeds --- microwave-assisted extraction --- response surface methodology --- antioxidant --- antiradical activity --- xanthine oxidase --- α-glucosidase
Choose an application
At present, cyanobacteria and their toxins (also known as cyanotoxins) constitute a major threat for freshwater resources worldwide. Cyanotoxin occurrence in water bodies around the globe is constantly increasing, whereas emerging, less studied or completely new variants and congeners of various chemical classes of cyanotoxins, as well as their degradation/transformation products are often detected. In addition to planctic cyanobacteria, benthic cyanobacteria, in many cases, appear to be important toxin producers, although far less studied and more difficult to manage and control. This Special Issue highlights novel research results on the structural diversity of cyanotoxins from planktic and benthic cyanobacteria, as well as on their expanding global geographical spread in freshwaters.
Meiktila Lake --- Raphidiopsis --- Microcystis --- cylindrospermopsin --- deoxycylindrospermopsin --- microcystin --- cyanobacteria --- cyanopeptides --- harmful bloom --- liquid chromatography-tandem mass spectrometry --- global natural product social networking (GNPS) --- dereplication strategy --- earthquakes --- harmful algal blooms --- sediment --- sediment cores --- co-occurrence --- toxicity --- plastics --- metals --- biocide --- anatoxin-a --- dihydroanatoxin-a --- Tychonema --- neurotoxicosis --- cyanotoxins --- macrophytes --- benthic --- tychoplanktic --- reservoir --- Maumee Bay --- Sandusky Bay --- Planktothrix --- anatoxin --- cyanotoxin detection --- harmful cyanobacterial blooms --- next-generation biomonitoring --- real-time PCR --- qPCR --- LC-MS/MS --- saxitoxin --- ESI-LC-MS/MS --- 16S rRNA phylogeny --- Azores --- eutrophication --- long term monitoring --- water quality --- microcystins --- anabaenopeptins --- microginins --- aeruginosins --- aeruginosamide --- SPE --- Lake Vegoritis --- deep-chlorophyll layers (DCLs) --- cyanobacterial toxins --- allelopathy --- bioactive metabolites --- hypoxia --- Georgian Bay --- peptide --- NRPS --- anabaenopeptin --- Synechococcus --- temperate lakes --- cyanotoxins (CTs) --- microcystins (MCs) --- volatile organic compounds (VOCs) --- taste and odor (T&O) compounds --- SPE-LC-MS/MS --- HS-SPME-GC/MS --- LC–qTRAP MS/MS --- fragmentation spectra --- structure elucidation --- cyanobacterial metabolites --- Greek freshwaters --- planktonic cyanobacteria --- blooms --- monitoring --- analysis --- mass spectrometry --- Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) --- fish tissue --- shellfish --- detection methods --- n/a --- LC-qTRAP MS/MS
Listing 1 - 10 of 114 | << page >> |
Sort by
|