Narrow your search

Library

KU Leuven (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

VIVES (5)

LUCA School of Arts (4)

ULiège (4)

UGent (3)

ULB (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (1)

2020 (1)

2019 (1)

2003 (1)

1976 (1)

Listing 1 - 5 of 5
Sort by
Breakup of liquid sheets and jets
Author:
ISBN: 1107131383 1280433604 9786610433605 0511169469 0511205368 0511063814 0511547099 0511308248 0511072279 9780511063817 9780511072277 9780511547096 9781280433603 9780511308246 9780521152891 0521152895 0521806941 9780511057489 0511057482 9780521806947 Year: 2003 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, first published in 2003, is an exposition of what we knew about the physics underlying the onset of instability in liquid sheets and jets. Wave motion and breakup phenomena subsequent to the onset of instability are carefully explained. Physical concepts are established through rigorous mathematics, accurate numerical analyses and comparison of theory with experiment. Exercises are provided for students, and these help familiarize the reader with the required mathematical tools. This book further provides a rational basis for designing equipment and processes involving the phenomena of sheet and jet breakup. Researchers interested in transition to turbulence, hydrodynamic stability or combustion will find this book a highly useful resource, whether their background lies in engineering, physics, chemistry, biology, medicine or applied mathematics.


Book
Turbulent jets
Author:
ISBN: 9780444413727 0444413723 9780080869964 0080869963 9786611984274 1281984272 Year: 1976 Volume: 5 Publisher: Amsterdam ; New York : Elsevier Scientific Pub. Co.,


Book
High-Performance Computing of Big Data for Turbulence and Combustion
Authors: ---
ISBN: 3030170128 303017011X Year: 2019 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.


Book
Dam Safety. Overtopping and Geostructural Risks
Authors: ---
ISBN: 3036556567 3036556559 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprintshows recent advances in dam safety related to overtopping and the prevention, detection, and risk assessment of geostructural risks. Related to overtopping, the issues treated are: the throughflow and failure process of rockfill dams; the protection of embankment dams against overtopping by means of a rockfill toe or wedge-shaped blocks; and the protection of concrete dams with highly convergent chutes. In the area of geostructural threats, the detection of anomalies in dam behavior from monitoring data using a combination of machine learning techniques, the numerical modeling of seismic behavior of concrete dams, and the determination of the impact area downstream of ski-jump spillways are also studied and discussed. In relation to risk assessment, three chapters deal with the development of fragility curves for dikes and dams in relation to various failure mechanisms.


Book
Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.

Keywords

check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard

Listing 1 - 5 of 5
Sort by