Listing 1 - 10 of 29 | << page >> |
Sort by
|
Choose an application
Bosons. --- Bose-Einstein particles --- Particles (Nuclear physics) --- Interacting boson-fermion models --- Interacting boson models
Choose an application
This book is a tribute to the life and work of J Q Chen. The contributions of Chen to nuclear and molecular physics are discussed vis-à-vis present developments in these fields. Among other subjects, the present status of microscopic theories of the interacting boson model in nuclear physics and the theory of symmetry adaptation of molecular vibrations in molecular physics are reviewed. The latter theory is particularly useful for large molecular species such as fullerenes, where icosahedral symmetry plays a fundamental role.
Contents:
Group theory. --- Interacting boson models. --- Nuclear physics. --- Molecules. --- Mathematical physics. --- Physical mathematics --- Physics --- Atomic nuclei --- Atoms, Nuclei of --- Nucleus of the atom --- Boson approximations, Interacting --- Boson models, Interacting --- IBA (Nuclear physics) --- IBM (Nuclear physics) --- Interacting boson approximations --- Nuclear collective models --- Bosons --- Groups, Theory of --- Substitutions (Mathematics) --- Algebra --- Mathematics
Choose an application
Fermions. --- Leptons (Nuclear physics) --- Particles (Nuclear physics) --- Fermions --- Fermi-Dirac particles --- Quantum statistics --- Interacting boson-fermion models
Choose an application
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.
Physics. --- Solid State Physics. --- Mathematical Methods in Physics. --- Metallic Materials. --- Low Temperature Physics. --- Mathematical physics. --- Materials. --- Physique --- Physique mathématique --- Matériaux --- Physics --- Physical Sciences & Mathematics --- Atomic Physics --- Fermions. --- Interacting boson-fermion models. --- Boson-fermion models, Interacting --- Boson-fermion systems, Interacting --- Fermion-boson models, Interacting --- Fermion-boson systems, Interacting --- IBFM (Nuclear physics) --- Interacting boson-fermion systems --- Fermi-Dirac particles --- Solid state physics. --- Low temperature physics. --- Low temperatures. --- Metals. --- Nuclear collective models --- Bosons --- Fermions --- Particles (Nuclear physics) --- Quantum statistics --- Interacting boson-fermion models --- Leptons (Nuclear physics) --- Engineering --- Engineering materials --- Industrial materials --- Engineering design --- Manufacturing processes --- Physical mathematics --- Materials --- Mathematics --- Cryogenics --- Low temperature physics --- Temperatures, Low --- Temperature --- Cold --- Metallic elements --- Chemical elements --- Ores --- Metallurgy --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Solids
Choose an application
"This book is written by the ATLAS Collaboration at CERN's Large Hadron Collider (LHC), to document and reflect on its more than 25 years of history. It covers all aspects of this global science project at the forefront of particle physics. The historical part recalls first the early stages of discussions in the community leading to the formation of the collaboration in 1992. In a unique approach, the second part documents the evolution from early detector concepts to the final instrument, covering the technical, financial and human aspects. This includes the phases of construction of detector components in the various institutes around the world as well as their installation and commissioning in the underground cavern at CERN. An important part is devoted to the operation of the whole experiment. The book highlights the capabilities and physics accomplishments so far, including the Higgs boson discovery (jointly announced with CMS). It features the various aspects of a broad spectrum of activities needed to arrive at the physics results. The book includes also an outlook to the detector upgrade activities preparing the experiment for the high-luminosity LHC phase of the next decades. Last but not least, it reveals the human aspects of the large ATLAS community working together pursuing common physics goals. The book is aimed at a broad readership with interest in large science projects and their history, as well as in the human endeavour of a worldwide collaboration."--
Large Hadron Collider (France and Switzerland) --- History --- ATLAS Collaboration --- History. --- Large Hadron Collider --- Hadron colliders --- Supercolliders --- ATLAS --- CERN --- Scientific Collaboration --- LHC --- Higgs Boson --- Detector Technologies --- Particle Physics --- Accelerator
Choose an application
This book was first published in 2007. When electrons are confined to two dimensions, cooled to near absolute zero temperature, and subjected to a strong magnetic field, they form an exotic new collective state of matter. Investigations into this began with the observations of integral and fractional quantum Hall effects, which are among the most important discoveries in condensed matter physics. The fractional quantum Hall effect and a stream of other unexpected findings are explained by a new class of particles: composite fermions. This textbook is a self-contained, pedagogical introduction to the physics and experimental manifestations of composite fermions. Ideal for graduate students and academic researchers, it contains numerous exercises to reinforce the concepts presented. The topics covered include the integral and fractional quantum Hall effects, the composite-fermion Fermi sea, various kinds of excitations, the role of spin, edge state transport, electron solid, bilayer physics, fractional braiding statistics and fractional local charge.
Fermions --- Fermions. --- Particles (Nuclear physics) --- Elementary particles (Physics) --- High energy physics --- Nuclear particles --- Nucleons --- Nuclear physics --- Fermi-Dirac particles --- Quantum statistics --- Interacting boson-fermion models --- Leptons (Nuclear physics)
Choose an application
Magnetism in Heavy Fermion Systems is a review volume which covers an important subset of topics in the field of heavy fermion and non-Fermi liquid physics. It summarizes much of the experimental information in these areas, and includes an article which discusses theoretical interpretations of the complex magnetic behavior of heavy fermion systems. The topics covered include heavy fermion superconductivity, muon spin relaxation in small-moment heavy fermions, neutron scattering from heavy fermions, random localized magnetism in heavy fermions, and magnetism in Pr-containing cuprates. One feature of the book which should be helpful to graduate students and new workers in the field is the extensive references and a separate list of review articles.
Fermions. --- Magnetism. --- Mathematical physics --- Physics --- Electricity --- Magnetics --- Fermi-Dirac particles --- Particles (Nuclear physics) --- Quantum statistics --- Interacting boson-fermion models --- Leptons (Nuclear physics)
Choose an application
Special Issue in honour of Prof. Yves Brihaye, on the occasion of his 65th birthday. The issue is mainly dedicated to the study of compact objects and solutions to Einstein-Yang-Mills equations and extensions thereof, topics to which Prof. Y. Brihaye contributed very significantly.
deconfinement --- Matter-gravity coupling --- Yang–Mills theory --- Q-ball --- boson star --- coadjoint orbits --- conformal group --- Poincaré group --- solitons --- boson stars --- Dirac stars --- Spontaneous Symmetry Breaking --- BEH field mass spectrum --- LHC experiments --- black holes --- scalar fields --- Einstein–Maxwell–scalar theory --- gravity models --- Chern–Simons gravity --- exact solutions --- wormholes --- NUT charge --- higher curvature theories
Choose an application
The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracol
Photons. --- Fermions. --- Materials at low temperatures. --- Fluid mechanics --- Low temperature materials --- Low temperature engineering --- Materials --- Strength of materials --- Fermi-Dirac particles --- Particles (Nuclear physics) --- Quantum statistics --- Interacting boson-fermion models --- Leptons (Nuclear physics) --- Light quantum --- Light --- Einstein-Podolsky-Rosen experiment
Choose an application
The book on Heavy-Fermion Systems is a part of the Book series ""Handbook of Metal Physics"", each volume of which is written to facilitate the research of Ph.D. students, faculty and other researchers in a specific area. The Heavy-Fermions (sometimes known as Heavy-Electrons) is a loosely defined collection of intermetallic compounds containing rare-earth (mostly Ce) or actinide (mostly U) elements. These unusual names were given due to the large effective mass (100-1,000 times greater than the mass of a free electron) below a critical temperature. They have a variety of ground states includi
Fermions. --- Metals --- Chemistry, Physical and theoretical. --- Physical metallurgy. --- Microstructure. --- Metallurgy --- Physics --- Chemistry, Theoretical --- Physical chemistry --- Theoretical chemistry --- Chemistry --- Physical metallurgy --- Fermi-Dirac particles --- Particles (Nuclear physics) --- Quantum statistics --- Interacting boson-fermion models --- Leptons (Nuclear physics)
Listing 1 - 10 of 29 | << page >> |
Sort by
|