Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The volume of data that is generated, stored, and communicated across different industrial sections, business units, and scientific research communities has been rapidly expanding. The recent developments in cellular telecommunications and distributed/parallel computation technology have enabled real-time collection and processing of the generated data across different sections. On the one hand, the internet of things (IoT) enabled by cellular telecommunication industry connects various types of sensors that can collect heterogeneous data. On the other hand, the recent advances in computational capabilities such as parallel processing in graphical processing units (GPUs) and distributed processing over cloud computing clusters enabled the processing of a vast amount of data. There has been a vital need to discover important patterns and infer trends from a large volume of data (so-called Big Data) to empower data-driven decision-making processes. Tools and techniques have been developed in machine learning to draw insightful conclusions from available data in a structured and automated fashion. Machine learning algorithms are based on concepts and tools developed in several fields including statistics, artificial intelligence, information theory, cognitive science, and control theory. The recent advances in machine learning have had a broad range of applications in different scientific disciplines. This book covers recent advances of machine learning techniques in a broad range of applications in smart cities, automated industry, and emerging businesses.
Machine learning. --- Learning, Machine --- Artificial intelligence --- Machine theory --- Physical Sciences --- Engineering and Technology --- Computer and Information Science --- Artificial Intelligence --- Machine Learning
Choose an application
The recent developments in biomedical sensors, wireless communication systems, and information networks are transforming the conventional healthcare systems. The transformed healthcare systems are enabling distributed healthcare services to patients who may not be co-located with the healthcare providers, providing early diagnoses, and reducing the cost in the healthcare section. The developments in medical internet of things (m-IoT) would enable a range of applications, including remote health monitoring through medical-grade wearables to provide homecare for elderlies; virtual doctor-patient interaction to have any time and place access to medical professionals; wireless endoscopic examination; and remotely operated robotic surgery to extend the access to highly skilled surgeons. Wireless body area networks (WBAN) are key enablers of these transformations. These networks connect sensors and actuators to external processing units, which could be placed on the surface of the patient's body or implanted inside the body to connect specific sensors and/or actuators inside, on, and around the body to the data collection points. The success of these networks highly relies on the advent of low-power, low-delay, reliable, and low-cost wireless connectivity solutions. This book covers recent developments in wireless healthcare systems to provide an insight to the technological solutions (e.g. for body area channel propagation models, communication techniques, and energy harvesting/transfer) for wireless body area networks, and emerging applications of medical internet of things and wireless healthcare systems.
Medical technology. --- Health care technology --- Health technology --- Technology --- Medicine --- Engineering Technology in Medicine --- Medical Instrument Technology --- Health Sciences
Choose an application
The papers in this proceeding discuss current and future trends in wearable communications and personal health management through the use of wireless body area networks (WBAN). The authors posit new technologies that can provide trustworthy communications mechanisms from the user to medical health databases. The authors discuss not only on-body devices, but also technologies providing information in-body. Also discussed are dependable communications combined with accurate localization and behavior analysis, which will benefit WBAN technology and make the healthcare processes more effective. The papers were presented at the 13th EAI International Conference on Body Area Networks (BODYNETS 2018), Oulu, Finland, 02-03 October 2018.
Electrical engineering. --- Application software. --- Health informatics. --- Electronics. --- Microelectronics. --- Signal processing. --- Image processing. --- Speech processing systems. --- Communications Engineering, Networks. --- Information Systems Applications (incl. Internet). --- Health Informatics. --- Electronics and Microelectronics, Instrumentation. --- Signal, Image and Speech Processing. --- Computational linguistics --- Electronic systems --- Information theory --- Modulation theory --- Oral communication --- Speech --- Telecommunication --- Singing voice synthesizers --- Pictorial data processing --- Picture processing --- Processing, Image --- Imaging systems --- Optical data processing --- Processing, Signal --- Information measurement --- Signal theory (Telecommunication) --- Microminiature electronic equipment --- Microminiaturization (Electronics) --- Electronics --- Microtechnology --- Semiconductors --- Miniature electronic equipment --- Electrical engineering --- Physical sciences --- Clinical informatics --- Health informatics --- Medical information science --- Information science --- Medicine --- Application computer programs --- Application computer software --- Applications software --- Apps (Computer software) --- Computer software --- Electric engineering --- Engineering --- Data processing --- Body area networks (Electronics) --- BANs (Body area networks) --- WBANs (Wireless body area networks) --- Wireless body area networks (Electronics) --- Wireless sensor networks --- Medical informatics.
Listing 1 - 3 of 3 |
Sort by
|