Listing 1 - 2 of 2 |
Sort by
|
Choose an application
One of the most significant tasks facing mathematics educators is to understand the role of mathematical reasoning and proving in mathematics teaching, so that its presence in instruction can be enhanced. This challenge has been given even greater importance by the assignment to proof of a more prominent place in the mathematics curriculum at all levels. Along with this renewed emphasis, there has been an upsurge in research on the teaching and learning of proof at all grade levels, leading to a re-examination of the role of proof in the curriculum and of its relation to other forms of explanation, illustration and justification. This book, resulting from the 19th ICMI Study, brings together a variety of viewpoints on issues such as: The potential role of reasoning and proof in deepening mathematical understanding in the classroom as it does in mathematical practice. The developmental nature of mathematical reasoning and proof in teaching and learning from the earliest grades. The development of suitable curriculum materials and teacher education programs to support the teaching of proof and proving. The book considers proof and proving as complex but foundational in mathematics. Through the systematic examination of recent research this volume offers new ideas aimed at enhancing the place of proof and proving in our classrooms.
Proof theory --- Mathematics --- Study and teaching. --- ICMI --- Mathematical instruction --- Proof theory -- Study and teaching. --- Education. --- Mathematics Education. --- Logic, Symbolic and mathematical --- Mathematics. --- Math --- Science --- Mathematics—Study and teaching . --- Mathematics Education --- ICMI 19 --- mathematical reasoning --- mathematics teaching --- proof --- proving --- Open access --- Teaching of a specific subject
Choose an application
Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout
Epidemiology --- Communicable diseases --- Contagion and contagious diseases --- Contagious diseases --- Infectious diseases --- Microbial diseases in human beings --- Zymotic diseases --- Mathematical models --- Mathematical models. --- Diseases --- Infection --- Epidemics --- Public health --- Bayesian statistical inference. --- ICU model. --- Markov chain Monte Carlo method. --- Markov chain Monte Carlo methods. --- ReedІrost epidemic. --- age structure. --- asymptotic speed. --- bacterial infections. --- biological interpretation. --- closed population. --- compartmental epidemic systems. --- consistency conditions. --- contact duration. --- demography. --- dependence. --- disease control. --- disease outbreaks. --- disease prevention. --- disease transmission. --- endemic. --- epidemic models. --- epidemic outbreak. --- epidemic. --- epidemiological models. --- epidemiological parameters. --- epidemiology. --- general epidemic. --- growth rate. --- homogeneous community. --- hospital infections. --- hospital patients. --- host population growth. --- host. --- human social behavior. --- i-states. --- individual states. --- infected host. --- infection transmission. --- infection. --- infectious disease epidemiology. --- infectious disease. --- infectious diseases. --- infectious output. --- infective agent. --- infectivity. --- intensive care units. --- intrinsic growth rate. --- larvae. --- macroparasites. --- mathematical modeling. --- mathematical reasoning. --- maximum likelihood estimation. --- microparasites. --- model construction. --- outbreak situations. --- outbreak. --- pair approximation. --- parasite load. --- parasite. --- population models. --- propagation speed. --- reproduction number. --- separable mixing. --- sexual activity. --- stochastic epidemic model. --- structured population models. --- susceptibility. --- vaccination.
Listing 1 - 2 of 2 |
Sort by
|