Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Photonics has had a decisive influence on recent scientific and technological achievements. It includes aspects of photon generation and photon–matter interaction. Although it finds many applications in the whole optical range of the wavelengths, most solutions operate in the visible and infrared range. Since the invention of the laser, a source of highly coherent optical radiation, optical measurements have become the perfect tool for highly precise and accurate measurements. Such measurements have the additional advantages of requiring no contact and a fast rate suitable for in-process metrology. However, their extreme precision is ultimately limited by, e.g., the noise of both lasers and photodetectors. The Special Issue of the Applied Science is devoted to the cutting-edge uses of optical sources, detectors, and optoelectronics systems in numerous fields of science and technology (e.g., industry, environment, healthcare, telecommunication, security, and space). The aim is to provide detail on state-of-the-art photonic technology for precision metrology and identify future developmental directions. This issue focuses on metrology principles and measurement instrumentation in optical technology to solve challenging engineering problems.
infrared thermometer --- mid-wave infrared --- indium arsenide antimony photodiode --- uncooled thermometer --- fibreoptic coupling --- chopper stabilised op-amp --- zero-drift pre-amplifier --- ammonia detection --- NH3 --- MOX sensors --- polymer sensors --- laser absorption spectroscopy --- CRDS --- CEAS --- MUPASS --- PAS --- HOT IR detectors --- HgCdTe --- P-i-N --- BLIP condition --- 2D material photodetectors --- colloidal quantum dot photodetectors --- low-light photodetectors --- fluorescence microscopy --- time-resolved fluorescence microscopy --- hybrid photodetector (HPD) --- single-molecule fluorescence detection --- fourier ptychography --- image classification --- deep learning --- neural network --- electro-optic modulator --- frequency modulation --- displacement measuring interferometer --- quantum cascade laser --- laser controller --- infrared modulator --- laser spectroscopy --- free space optics --- photonic metrology --- accuracy --- precision --- resolution --- FTIR --- absorption spectroscopy --- gas sensors --- optoelectronic sensors
Choose an application
The long-term productivity of forest ecosystems depends on the cycling of nutrients. The effect of carbon dioxide fertilization on forest productivity may ultimately be limited by the rate of nutrient cycling. Contemporary and future disturbances such as climatic warming, N-deposition, deforestation, short rotation sylviculture, fire (both wild and controlled), and the invasion of exotic species all place strains on the integrity of ecosystem nutrient cycling. Global differences in climate, soils, and species make it difficult to extrapolate even a single important study worldwide. Despite advances in the understanding of nutrient cycling and carbon production in forests, many questions remain. The chapters in this volume reflect many contemporary research priorities. The thirteen studies in this volume are arranged in the following subject groups: • N and P resorption from foliage worldwide, along chronosequences and along elevation gradients; • Litter production and decomposition; • N and P stoichiometry as affected by N deposition, geographic gradients, species changes, and ecosystem restoration; • Effects of N and P addition on understory biomass, litter, and soil; • Effects of burning on soil nutrients; • Effects of N addition on soil fauna.
leaf stoichiometry --- Cyclocarya paliurus --- geographic variations --- natural populations --- climate variables --- nitrogen --- phosphorus --- N:P ratio --- soil stoichiometry --- soil nutrient --- nutrient limitations --- natural grassland --- natural forest --- soil fauna --- N addition --- soil profile --- community structure --- food resources --- poplar plantations --- experimental nitrogen addition --- understory plant growth --- plant nutrient --- nonstructural carbohydrates --- Alpine treeline --- Nitrogen --- Non-structural carbohydrates --- Phosphorus --- Potassium --- Remobilization --- Storage --- Upper limits --- nutrient resorption --- nitrogen and phosphorous --- planted forests --- climate zones --- plant functional types --- precipitation --- green leaf nutrient --- nitrogen deposition --- N and P colimitation --- leaf N:P stoichiometry --- soil N:P stoichiometry --- seasonal variations --- nutrition resorption --- ecological stoichiometry --- plant-soil feedback --- stand age --- Robinia pseudoacacia L. --- forests --- nutrients --- disturbance --- management --- diversity --- biomass --- soil properties --- experimental fires --- UV-spectroscopy analysis --- thermal infrared thermometer --- nitrogen and phosphorus addition --- understory plants --- stoichiometric ratio --- litter decomposition --- litter standing crop carbon --- conversion coefficient --- climatic factors --- Tibetan Plateau --- shrublands --- Cunninghamia lanceolata --- mixture effect --- nutrient cycling --- rhizosphere effect --- species competition
Listing 1 - 2 of 2 |
Sort by
|