Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This book is comprised of important reviews and cutting-edge original research papers concerning electrospun and electrosprayed formulations in drug delivery. Electrospinning and electrospraying have, in recent years, attracted increasing attention in the pharmaceutical sector, with research in the area advancing rapidly. It is now possible to prepare extremely complex systems using multi-fluid processes, and to increase production rates to an industrial scale. Electrospun formulations can be produced under GMP conditions and are in clinical trials. In this volume, we explore a range of topics around electrospinning and electrospraying in controlled drug delivery. Four reviews cover the exciting potential of cyclodextrin-containing fibers and the many potential biomedical applications of electrospun fibers. The use of electrospinning to prepare amorphous systems and improve the dissolution rate and solubility of poorly soluble active ingredients is addressed, and the possibilities of such materials in tissue engineering are comprehensively covered. The six original research papers cover the effect of molecular properties on API release from Eudragit-based electrospun fibers; ferulic acid solid dispersions; electrospun medicines to treat psoriasis; scale up of electrospinning and its use to produce low-dose tablets; transepithelial permeation of drugs released from electrospun fibers, and the possibilities for the synergistic chemophotothermal treatment of cancer.
tissue engineering --- cyclodextrin --- permeability --- poly (vinylpyrrolidone-co-vinyl acetate) --- crystalline --- antibacterial --- drug delivery --- homogenization --- capsaicin --- combination therapy --- high-shear mixing --- cyclodextrin-inclusion complexes --- amorphous --- high-speed electrospinning --- PMVE/MA --- aqueous solubility enhancement --- sieve analysis --- Raman mapping --- Eudragit --- nanofibers --- psoriasis --- PCL --- essential oils --- parameters --- antibiotics --- xanthan gum --- carvedilol --- amorphous composite --- coaxial electrospinning --- insoluble drug --- NIR-triggered drug release --- fast dissolution --- electrospinning --- oral drug delivery --- electrospun nanofibers --- poly-cyclodextrin --- TRPV1 --- gallic acid --- solid dispersion --- photothermal therapy --- drug release --- applications --- Drug delivery systems. --- Electrospinning. --- Nanoparticles. --- Nano-particles --- NPs (Nanoparticles) --- Nanoscale particles --- Nanostructured materials --- Particles --- Spinning --- Delivery systems, Drug --- Drug administration technology --- Drug delivery technology --- Drugs --- Pharmaceutical technology --- Delivery systems
Choose an application
The papers collected in this Special Issue entitled “Electrospun Nanomaterials: Applications in Food, Environmental Remediation, and Bioengineering” illustrate the high diversity and potential for implementation of electrospun nanofibers in these fields, including the covering of a wide number of subtopics. Examples of these applications have included bioactive scaffolds, wound healing dressings, compound protective nanoreservoirs and sustained and controlled release systems. An important driver of these applications results from advances in materials science and new nanofiber manufacturing processes. Definitely, such pieces of fundamental research will contribute to the promotion of electrospinning as a focal point in the future development of technological applications at the interface of biological systems, which promise long-term benefits for both health and the environment.
electrospinning --- curcumin --- PLA/PEG/curcumin nanofiber --- drug release --- porous nanofiber --- polycaprolactone --- nanofibers --- COOH plasma --- cell adhesion and spreading --- cell viability --- freeze–thawed platelet-rich plasma immobilization --- piezoelectricity --- scaffold --- polyvinylidene fluoride --- polyvinylidene fluoride-trifluoroethylene --- tissue engineering --- osteoblast --- neuron --- stem cell --- aligned fiber --- HDPAF --- micro-nanofibers --- β-carotene --- thermoprotection --- photoprotection --- antibacterial effect --- centella --- propolis --- hinokitiol --- biodegradable polymer --- PHBH --- nanofiber --- food packaging --- functional membrane --- biomaterials --- polymers --- PMVE/MA --- nanoparticles --- nanoencapsulation --- antibiotics --- electrospun nanofibers --- polyethylene oxide nanofibers PEO-NFs --- microbial fuel cells --- honey --- food industry --- recovered energy (Erec) --- chitosan --- chitin nanofibrils --- hemostatic material --- hemorrhage --- photoactive nanoparticles --- cadmium selenide --- cellulose acetate --- electrospun fibers --- solar thermal --- n/a --- freeze-thawed platelet-rich plasma immobilization
Choose an application
Electrospinning is a versatile and effective technique widely used to manufacture nanofibrous structures from a diversity of materials (synthetic, natural or inorganic). The electrospun nanofibrous meshes’ composition, morphology, porosity, and surface functionality support the development of advanced solutions for many biomedical applications. The Special Issue on “Electrospun Nanofibers for Biomedical Applications” assembles a set of original and highly-innovative contributions showcasing advanced devices and therapies based on or involving electrospun meshes. It comprises 13 original research papers covering topics that span from biomaterial scaffolds’ structure and functionalization, nanocomposites, antibacterial nanofibrous systems, wound dressings, monitoring devices, electrical stimulation, bone tissue engineering to first-in-human clinical trials. This publication also includes four review papers focused on drug delivery and tissue engineering applications.
History of engineering & technology --- sol-gel --- electrospinning --- hydroxyapatite --- nanofiber --- antibacterial --- titanium --- antibacterial coatings --- nanocomposite coatings --- TiO2 photocatalytic --- orthopedic infections --- 3D printing --- nanofibers --- encapsulation --- protein diffusion --- in vivo tissue engineering --- immuno-isolation --- transplantation --- sputtering --- drug delivery --- wound dressing --- biocompatibility --- tissue engineering --- biomimetic scaffolds --- gelatin --- micromolding --- biomaterials --- poly(lactic acid) (PLLA) --- bioactive glass --- scaffolds --- composite fibres --- bone regeneration --- poly(vinylidene fluoride) --- composite nanofiber --- piezoelectricity --- antioxidant activity --- well-aligned nanofibers --- P(VDF-TrFE) --- piezoelectric nanogenerator --- preosteoblasts electrospinning --- silicone modified polyurethane nanofibers --- physical properties --- cell attachment --- cell proliferation --- cytotoxicity --- biopolymers --- packaging --- pharmaceutical --- biomedical --- alginate --- gelatin fibers --- ZnO particles --- antibacterial activity --- fabrication --- therapeutics --- biomedical applications --- antibody immobilization --- electrospun nanofibers --- TNF-α capture --- human articular chondrocytes --- rheumatoid arthritis --- microfluidic chip --- live assay --- hepatocellular carcinoma cells --- PLA95 --- guided tissue regeneration (GTR) --- electrospun fiber mats --- mechanobiology --- glioblastoma --- finite element modeling --- cancer treatment --- drug release --- nanomedicine --- biocompatible polymers --- hyperthermia
Listing 1 - 3 of 3 |
Sort by
|